

Zlib
Automated Security Assessment

Zlib version 1.2.8
September 30th, 2016

Prepared For:
Gervase Markham, Chris Riley
Secure Open Source

Prepared By:
Artem Dinaburg | Trail of Bits
artem@trailofbits.com

Pascal Cuoq | TrustInSoft
cuoq@trust-in-soft.com

Changelog
Synopsis

Engagement Goals
Areas of Focus
Executive Summary

Recommendations Summary
Methodology

Testing Methodology
Verification Methodology

Findings Summary
Software Testing
Software Verification
Table of Findings

Findings
Finding 1: Incompatible declarations for external linkage function deflate
Finding 2: Accessing a buffer of char via a pointer to unsigned int
Finding 3: Out-of-bounds pointer arithmetic in inftrees.c
Finding 4: Undefined Left Shift of Negative Number
Finding 5: Big Endian Out Of Bounds Pointer

Appendix A. Generated Inputs and Coverage Data
Appendix B. Fix Log

Alternate Solution for Finding 2
About Trail of Bits
About TrustInSoft

Changelog
August 25, 2016: Initial report delivered
September 28, 2016: Added Appendix B with Retest Results
September 30, 2016: Publication version

Synopsis
In August 2016, Mozilla engaged Trail of Bits to perform a security assessment of
Zlib as part of the Mozilla Secure Open Source (SOS) Fund. Zlib is an open source
compression library with a history of security vulnerabilities. Mozilla is interested in
the security of zlib because zlib is used in virtually every software package that
requires compression or decompression. Securing zlib will help secure the core
infrastructure of the Internet.

To perform this audit, Trail of Bits used the automated vulnerability discovery tools
developed for the DARPA Cyber Grand Challenge . These tools automatically 1

audited zlib for security vulnerabilities, delivering confidence while reducing costs.
Additionally, we teamed with colleagues at TrustInSoft to augment our assessment
with the unique capabilities of their verification toolkit.

Engagement Goals
The goal of the engagement was to evaluate zlib for security vulnerabilities and to
serve as a proof-of-concept for automated software audits. The audit used a
two-pronged approach: testing to find bugs in the final compiled zlib library, and
verification to find latent bugs in the zlib source code.

The testing tools were used to search for memory safety vulnerabilities, such as
buffer overflows, heap overflows, out of bounds array access, and so on. Similar
bugs had been previously identified in zlib. The verification tools were used to
identify violations of the C standard; specifically, the use of undefined behavior.

Areas of Focus
The audit focused on the compression and decompression functionality provided
by zlib. While zlib exposes several APIs, it is the compression and decompression
functionality that typically processes untrusted input. This code may be reached via
two general paths: processing raw data input and processing GZip formatted input.
We tested both paths.

We did not inspect functions that query or set internal library state, provide
replacements for C file I/O functionality (other than necessary to test GZip
decoding), nor functions that deal with very specific zlib use cases, such as forcing
specific decompression strategies. These functions are unlikely to accept user input
or are very unlikely to be used in an application.

1 https://www.cybergrandchallenge.com/

Executive Summary

Application Summary

Name Zlib

Version 1.2.8 (http://zlib.net/zlib-1.2.8.tar.gz)

Type Userspace Compression Library

Platform Cross-Platform (tested on Linux)

Engagement Summary

Engagement Type Bug Hunting + Verification

Engagement Tools Trail of Bits CRS + TrustInSoft TIS-Interpreter 2

Consultants Engaged 2

Total Engagement Effort 5 days

Vulnerability Summary

Total High Severity Issues 0

Total Medium Severity Issues 1

Total Low Severity Issues 4

Total Informational Severity Issues 0

Total 5

Category Breakdown

Undefined Behavior 5

2 https://github.com/TrustInSoft/tis-interpreter

http://zlib.net/zlib-1.2.8.tar.gz

Recommendations Summary
Do not rely on undefined behavior. We have identified five areas where code in
zlib invokes undefined behavior in the C standard. Use of this code does not
currently generate buggy binaries, but it is possible that with future compilers or
platforms these latent bugs may manifest in compiled code.

Opt-in support for legacy compilers and micro-optimizations. Cases of
undefined behavior mostly appear in code that is designed to work around old,
buggy compilers or to provide micro-optimizations for specific architectures. Making
this behavior optional rather than default would result in cleaner builds for
common zlib usage.

Deprecate support for ancient compilers. Support for ancient buggy compilers
and hacks to work around their bugs needlessly increases the complexity of zlib's
codebase. Rarely used platforms should be deprecated to simplify the zlib
codebase, making the code easier to read, understand, and audit.

Deprecate architecture-specific micro-optimizations. Architecture-specific
micro-optimizations should be eliminated. They needlessly increase complexity,
may introduce undefined behavior, and are likely unnecessary with modern
optimizing compilers.

Conduct regular security audits. Zlib is a great candidate for periodic security
audits: the code base is very stable and updates are infrequent. The long release
cycle allows ample time to perform and respond to an automated security audit.
Periodic audits can prevent the introduction of new bugs into the zlib codebase.

Methodology

Testing Methodology
The Trail of Bits Cyber Reasoning Systems (CRS) uses a combination of symbolic and
concrete vulnerability hunting strategies to overcome roadblocks that stymie other
security tools. Developed to compete in the DARPA Cyber Grand Challenge, it has
since been extended to operate on Linux binaries. The CRS uses a new technique
we call analysis boosting to combine our novel low-latency fuzzer with two symbolic
execution engines. Using this approach, we are able to gather a fine-grained picture
of program execution and identify subtle flaws that a human auditor would likely
miss.

The only prior requirement is the creation of a “driver” program to exercise target
functionality in zlib. We created drivers for four zlib APIs -compress, uncompress,
gzread, gzwrite- to exercise the compression, decompression, and GZip file format
functionality inside zlib. These drivers were linked with zlib and run inside the CRS.
The CRS then investigated various program states, switching between concrete and
symbolic execution as needed to explore deeper in the zlib code. Each tested
function was run through the CRS for two weeks on a 48-core machine.

The tested functions accept arguments that affect how zlib will process inputs. The
chief of these are the input buffer size and the destination buffer size (for compress
and uncompress) and the file mode for gzread and gzwrite. These were set to fixed
values shown in Table 1. The buffer sizes were chosen to be large enough to test a
variety of inputs, yet small enough to be analyzed in a reasonable timeframe.

Tested Function Input Buffer Size
(bytes)

Output Buffer Size
(bytes)

File
Mode

compress 4096 2048 n/a

uncompress 4096 163839 n/a

gzread n/a 4096 “rb”

gzwrite 4096 n/a “wb”

Table 1: Buffer sizes used when testing zlib functions

The file mode used with gzread and gzwrite can specify a compression or
decompression strategy in addition to whether the file is opened for reading or

writing (e.g. the file mode “wbR” would use the RLE compression strategy). The
modes we selected will use the default compression strategies -- this is the most
probable use-case of zlib, but will miss code coverage that is dependent on specific
strategies.

To enhance the CRS’s thoroughness, the uncompress and gzread tests were seeded
with data compressed at different compression levels. The compress and gzwrite
tests were not seeded. All inputs were generated by the CRS with no prior
knowledge of the input format or requirements.

Testing Coverage
During this assessment, we focused on
typical zlib usage and code related to
compression and decompression
functionality. Zlib not only provides
functionality for compressing and
decompressing data, but it also
includes functionality to check
compression bounds, control internal
library state, operate on file streams,
special functionality to operate on large
files, etc.

The CRS generated very high coverage
for the location of previous zlib
vulnerabilities : the Huffman tree code 3

(inftrees.c: 98.3% line coverage, 93.7%
branch coverage, trees.c: 93.6% line
coverage, 89.4% branch coverage). The
file infback.c has 0% coverage; it is an
alternative to inflate.c and is used when
callback style I/O is preferred.

This coverage is a result of both invoking the compression related code directly and
via GZip functionality. This compares very favorably to the hand-crafted unit tests
that come with zlib, which generate 100% coverage for infback.c, inffast.c, and
inftrees.c, 98.6% coverage for inflate.c, and almost zero coverage for anything else.

3 https://www.immunityinc.com/downloads/zlib.pdf

Compression Functionality
The tested compression function, compress is an alias for compress2 with a default
compression level (equivalent to setting compression level 6). In turn, compress2 will
call into core zlib code: it will initialize a deflate stream (deflateInit), deflate the
input buffer (deflate), and close the deflate stream (deflateEnd).

This core deflate functionality is present in deflate.c. The CRS achieved 44.0% line
coverage in deflate.c. That number is deceiving. Much of the functionality requires
setting custom parameters for compression strategy, memory size, window bits,
etc., and is unreachable from the compress function (or typical use of zlib).
Conversely, the functionality responsible for the actual deflation process (trees.c)
has very high coverage under the CRS (93.6% line coverage). This is the part of the
code most readily reached via varying inputs (instead of configuration options), and
it is very well tested.

Decompression Functionality
The function responsible for decompression, uncompress, is effectively the mirror
opposite of compress, and has very similar behavior. The uncompress function is a
wrapper for uncompress2, which itself calls into core zlib code in inflate.c:
inflateInit, inflate, inflateEnd.

The decompression code is well covered: 75.3% of inflate.c and 83.8% of inffast.c
was reached via the CRS. This code is reachable by both the uncompress function
and via GZip related code paths. Most of the uncovered code is only reachable via
different entry points not utilized during typical zlib usage (e.g. inflateSync,
inflateCopy, inflatePrime).

Similarly to compression, the code responsible for the deflation of input data
(inftrees.c), which is most readily reached by varying input data instead of
configuration options, is very well tested, at 98.3% line coverage.

GZip Functionality
Zlib includes compression-friendly replacements for common libc file operation
functions. These functions transparently operate on GZip compressed data, 4

automatically compressing and decompressing file streams using zlib. After our
initial investigation of compress and uncompress, it became evident that some
functionality was only reachable via GZip related code, so we also tested gzread and
gzwrite, the compression friendly replacements of fread and fwrite.

4 http://www.zlib.org/rfc-GZip.html

File Line Coverage (%) Exported Functions

gzclose.c 80.0% gzclose

gzlib.c 37.8% gzopen, gzopen64, gzdopen, gzbuffer,
gzrewind, gzseek64, gzeek, gtell64, gztell,
gzoffset64, gzoffset, gzeof, gzerror,
gzclearerr

gzread.c 50.7% gzgets, gzdirect, gzclose_r, gzread, gzgetc,
gzgetc_

gzwrite.c 40.5% gzwrite, gzputc, gzputs, gzvprintf, gzprintf,
gzflush, gzsetparams, gzclose_w

Table 3: Code coverage of GZip functionality in zlib. The functions we created drivers
for and tested are in bold.

The code coverage for GZip related functionality is in Table 3. Our goal was to
enhance testing of compression and decompression functionality reachable via
GZip and to stress GZip format parsing code. The unreached code includes many
different entry points for libc replacement functions (i.e. gzseek, gztell, gzprintf,
etc.) which were not evaluated.

Verification Methodology
TrustInSoft relies on a combination of formal method techniques that, together,
deliver powerful and efficient solutions for high-assurance software security
analysis. The tool used in this instance, TIS-interpreter, interprets C programs
statement by statement from beginning to end, verifying at each statement whether
the program can invoke undefined behavior. TIS-interpreter can detect violations of
the C standard even when applied to regression tests that have never revealed
previous problems.

Verification Details
TIS-interpreter, set to interpret the source code according to the
implementation-defined choices of GCC on x86-64, was launched on the minigzip
test program provided with zlib with inputs generated by afl-fuzz, and directly on
the compress and uncompress functions using inputs generated by the CRS.
Execution in TIS-interpreter is tens of thousands of times slower than execution of
the same code when compiled. A minimal test suite exercising every reached
statement was extracted from the set of inputs generated by the CRS in order to be
executed inside TIS-interpreter.

TIS-interpreter was used in a mode in which both the possibilities of a null pointer
and a valid pointer being returned are considered, for each individual allocation.
Thus, the results obtained capture any possible behavior of zlib along the execution
of the tests for any interlacing of allocation successes and failure.

In addition, the list of remaining allocated memory blocks was checked to be empty
for each of these possible executions, thus checking that zlib does not have any
memory leak for any sequence of allocations successes and failures when handling
the inputs.

Findings Summary
This section covers our findings from both a software testing and a software
verification standpoint. Software testing attempts to identify vulnerabilities that are
present in compiled binary code; software verification identifies vulnerabilities that
are present at the source level. These vulnerabilities may not manifest as problems
right now, but could at a later date (e.g. when compilers make different
assumptions about undefined behavior).

Software Testing
The CRS is especially tuned for identifying memory safety violations. This class of
bug encompasses many common security vulnerabilities, such as buffer overflows,
use-after-free errors, stack overflows and heap overflows. Using the CRS, we were
unable to identify memory safety issues with the compress, uncompress, gzread and
gzwrite functions in zlib. We conclude that the assessed code is highly unlikely to
harbor these types of bugs.

Software Verification
Using TIS-Interpreter, clang, and human review, several instances of zlib relying on
undefined behavior were identified, when compiled with default settings. Relying on
undefined behavior has caused security issues in the past, and may result in bugs 5

in compiled zlib code in the future.

Table of Findings

Title Severity

1 Incompatible declarations for external linkage function
deflate

Medium

2 Accessing a buffer of char via a pointer to unsigned int Low

3 Out-of-bounds pointer arithmetic in inftrees.c Low

4 Undefined Left Shift of Negative Number Low

5 Big Endian Out Of Bounds Pointer Low

5 http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_14.html

http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_14.html

Findings

Finding 1: Incompatible declarations for external linkage function
deflate
Severity: Medium
Type: Undefined Behavior

Description:
The declaration and implementation of the deflate function use incompatible
types. The first argument to deflate is of type zstreamp, which is a pointer to an
internal structure that has a member of type struct internal_state. In a default
compilation of zlib, struct internal_state is re-defined after the declaration of
deflate.

Even though current compilers process this code without issues, this bug is rated
severity medium for two reasons. First, the deflate function is used by virtually
every application that includes zlib. Second, there is no telling what interactions the
bug could have in the future with link-time optimizations and type-based alias
analyses, both features that are present (but not default) in clang.

Source Reference (zlib.h):

 1740 /* hack for buggy compilers */

 1741 #if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL)

 1742 struct internal_state {int dummy;};

 1743 #endif

The reason this defect is not detected by ordinary compilation chains is that
deflate is declared with incompatible types in different compilation units.

This results from a workaround for buggy compilers. Venturing a guess as to the
origin of this wart, some ancient C compilers must have complained (wrongly) when
'struct internal_state;' was used in a compilation unit without the list of
members of the struct, and their respective types, being defined. If so, the comment
is correct in calling the compilers buggy: this is one of the very few abstraction
mechanisms in standard C, and it has been widely used as a result in plenty of other
C code written since zlib. The buggy compilers, if they were still used, would choke
on everything else apart from zlib.

https://github.com/pascal-cuoq/zlib-fork/blob/a52f0241f72433b69fd558100a32d927d9571e20/zlib.h#L1740

Recommendations:
This bug should be fixed immediately by either removing support for buggy
compilers, or by making NO_DUMMY_DECL a default compile-time option, thereby
forcing buggy compilers to opt-in to workaround behavior.

In the longer term, support for old and buggy compilers should be deprecated. The
result will be less code, fewer bugs, and a cleaner, easier-to-read and -audit
codebase.

Finding 2: Accessing a buffer of char via a pointer to unsigned int
Severity: Low
Type: Undefined Behavior

Description:
In the crc32_little and crc32_big functions, a pointer to unsigned int is used to
access a buffer of type char*.

Source reference (crc32.c):
 241 #define DOLIT4 c ^= *buf4++; \

 242 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \

 243 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]

 244 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4;

DOLIT4

 …

 247 local unsigned long crc32_little(crc, buf, len)

 248 unsigned long crc;

 249 const unsigned char FAR *buf;

 250 unsigned len;

 251 {

 …

 257 while (len && ((ptrdiff_t)buf & 3)) {

 258 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);

 259 len--;

 260 }

 261

 262 buf4 = (const z_crc_t FAR *)(const void FAR *)buf;

 263 while (len >= 32) {

 264 DOLIT32;

 265 len -= 32;

 266 }

 267 while (len >= 4) {

 268 DOLIT4;

 269 len -= 4;

 …

The body of crc32_little contains four similar loops that each update c,
increment buf, and decrement len. One of the loops accesses the buffer through a
pointer to words (z_crc_t), for speed.

https://github.com/pascal-cuoq/zlib-fork/blob/a52f0241f72433b69fd558100a32d927d9571e20/crc32.c#L241

This access violates “strict aliasing rules,” as they are known (after the name of the
GCC optimization -fstrict-aliasing). In short, the strict aliasing rules mandate that
memory is read with the same type that was used to write it . 6

Optimizing compilers assume that the strict aliasing rules violated here are always
respected. They do not make an effort to detect violations of strict aliasing, and
hence do not warn about such violations. It does not matter if the reading and
writing of the buffer occurs inside or outside of the same function, or within
different compilation units; strict aliasing is still violated.

Current optimizing compilers will produce erroneous results, like different CRC32
values for the same memory contents, in a toy example that violates strict aliasing.
The only complications that prevent current compilers from applying similar
transformations to more complex code, such as zlib, are:

1) The type char is special (see C11 6.5p7). This does not mean that it is permissible
to write values as chars but read them via a pointer to words. The char type scares
compiler authors into assuming that writes through char lvalues can modify
anything. One reason for this is because the standard differentiates between
dynamically allocated memory and program variables. Compilers do not yet have
static analyses to infer whether a pointer to char points to dynamic memory or
program variables.

2) Separate compilation units. The modifications of the buffer, as an array of chars,
take place in a different compilation unit than that of the CRC32 functions.

Future compilers may resolve both of these complications.

Recommendations:
There are several possible fixes for this bug:

● Do nothing. There may not be a uniformly superior version with the same
combination of speed, standards conformance, and portability.

● If speed doesn't matter, suppress three out of the four similar loops. This

alternative also makes the big- and little-endian versions of the CRC
computation identical, so that the code in crc32.c can be greatly simplified:

6 http://port70.net/~nsz/c/c11/n1570.html#6.5p7

https://godbolt.org/g/pqxFrj
https://github.com/pascal-cuoq/zlib-fork/commit/d7cde11e0b44f4e97cc1fd5250d826967841e614
http://port70.net/~nsz/c/c11/n1570.html#6.5p7

diff --git a/crc32.c b/crc32.c
index 979a719..d867796 100644
--- a/crc32.c
+++ b/crc32.c
@@ -250,25 +250,9 @@ local unsigned long crc32_little(crc, buf, len)
 unsigned len;
 {
 register z_crc_t c;
- register const z_crc_t FAR *buf4;

 c = (z_crc_t)crc;
 c = ~c;
- while (len && ((ptrdiff_t)buf & 3)) {
- c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
- len--;
- }
-
- buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
- while (len >= 32) {
- DOLIT32;
- len -= 32;
- }
- while (len >= 4) {
- DOLIT4;
- len -= 4;
- }
- buf = (const unsigned char FAR *)buf4;

 if (len) do {
 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);

● If speed matters and non-standard GCC extensions in the source code

(recognized by clang) are acceptable, use the may_alias type attribute. This
would be a good opportunity to replace both the 4-at-a-time and the
32-at-a-time loops by a single 8-at-a-time loop that takes advantage of
modern 64-bit instruction sets.

● If speed matters and the C code must be portable, it can be built with the

-fno-strict-aliasing option when using the clang or gcc compilers.

● See one additional solution in Appendix B.

In the long term, platform-specific micro-optimizations should be deprecated. These
optimizations make the code more complex and may harbor latent bugs, such as
this one. Modern compilers are much better at optimizing and vectorizing code than
they used to be. Removing micro-optimizations will allow for simpler, more bug-free
code.

Finding 3: Out-of-bounds pointer arithmetic in inftrees.c
Severity: Low
Type: Undefined Behavior

Description:
Zlib computes out-of-bounds pointers in several places, even though these pointers
are not dereferenced. Still, using pointer arithmetic in order to go out of the bounds
of the pointed block is forbidden by the C standard, and compiler optimizations
exist that assume code does not do this . 7

Places where out-of-bounds pointer arithmetic is used are shown below.

Source Reference (inftrees.c):
 60 static const unsigned short lbase[31] = { /* Length codes 257..285 base

*/

 …

 63 static const unsigned short lext[31] = { /* Length codes 257..285 extra

*/

 …

 187 base = lbase;

 188 base -= 257;

 189 extra = lext;

 190 extra -= 257;

There is another instance in inffast.c where, with the default configuration (POSTINC
not defined), a pointer one-before-the-beginning is computed as the initial value for
the variables in and out.

Source Reference (inffast.c):
 24 #ifdef POSTINC

 …

 27 #else

 28 # define OFF 1

 29 # define PUP(a) *++(a)

 30 #endif

 …

 99 in = strm->next_in - OFF;

 …

 101 out = strm->next_out - OFF;

 …

 122 hold += (unsigned long)(PUP(in)) << bits;

7 https://lwn.net/Articles/278137/

https://github.com/pascal-cuoq/zlib-fork/commit/46c3f2f271508d2839aaf1f72e264d76b5b18e1d
https://github.com/pascal-cuoq/zlib-fork/blob/master/inffast.c#L24

Recommendations:
Rewrite the code in inftrees.c to avoid out-of-bound pointer computation.

The workaround for inffast.c is simpler: POSTINC must be defined in inffast.c.
Defining POSTINC does not have any functional effects, but may not be as fast on
some platforms, judging by the comments in inffast.c. These performance
differences may not be evident on modern compilers that can better re-order
instructions.

In the longer term, zlib should be periodically audited to detect potential undefined
behavior. The code base is very stable and updates are infrequent, ensuring there is
ample time to perform audits and fix code based on the findings.

https://github.com/pascal-cuoq/zlib-fork/blob/523520f0c92f5d8a40d7f53c532cd02784176185/inffast.c#L24-L30

Finding 4: Undefined Left Shift of Negative Number
Severity: Low
Type: Undefined Behavior

Description:
While testing the possible fix of the strict aliasing issue (Finding 2), we identified an
invalid left shift of a negative number.

Source Reference (inflate.c):
1507 if (strm == Z_NULL || strm->state == Z_NULL) return -1L << 16;

Left shifts of negative value are undefined, but in practice this will probably
continue to have the desired behavior.

Recommendation:
Change -1L << 16 to (~0xFFFFL). Potential sample code:

1507 if (strm == Z_NULL || strm->state == Z_NULL) return (~0xFFFFL);

https://github.com/pascal-cuoq/zlib-fork/blob/a52f0241f72433b69fd558100a32d927d9571e20/inflate.c#L1507

Finding 5: Big Endian Out Of Bounds Pointer
Severity: Low
Type: Undefined Behavior

Description:
The crc32_big function will create an out of bound pointer when it decrements
buf4 prior to use.

Source Reference (crc32.c):
...
297 while (len && ((ptrdiff_t)buf & 3)) {

298 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);

299 len--;

300 }

301

302 buf4 = (const z_crc_t FAR *)(const void FAR *)buf;

303 buf4--;

…

Using pointer arithmetic in order to go out of the bounds of the pointed block is
forbidden by the C standard. Compiler optimizations assume code does not do this.

Recommendation:
This issue may be solved by removing the dependence on buf4 while addressing
Finding 2 (strict aliasing violation), or by a change similar to this commit. After this
change, there are no longer any detectable issues with the big-endian version of
zlib.

https://github.com/pascal-cuoq/zlib-fork/blob/a52f0241f72433b69fd558100a32d927d9571e20/crc32.c#L303
https://github.com/pascal-cuoq/zlib/commit/8056c7da535169cf5f99e920898ccdd3f9458448

Appendix A. Generated Inputs and Coverage Data
Attached with this report are:

● Raw coverage data and HTML formatted code coverage information
(zlib_coverage.tar.gz)

● The inputs to compress to generate that coverage (compress_inputs.tar.gz)
● The inputs to uncompress to generate that coverage

(uncompress_inputs.tar.gz)
● The inputs to gzread used to generate code coverage (gzread_inputs.tar.gz)
● The inputs to gzwrite used to generate code coverage (gzwrite_inputs.tar.gz)

The input sets were extracted from the CRS, and are representative tests of
different code paths that the CRS was able to reach.

Appendix B. Fix Log
Zlib made the following modifications to their codebase as a result of this report.
Each of the fixes was verified by the audit team.

Finding 1: Incompatible declarations for external linkage function deflate
(Med)
https://github.com/madler/zlib/commit/3fb251b363866417122fe54a158a1ac5a7837101

Finding 2: Accessing a buffer of char via a pointer to unsigned int (Low)
There is currently no available fix for Finding 2 that meets Zlib’s compatibility and
performance goals. Currently available compilers produce correct code for this
construction, however, we cannot predict what future compilers may or may not do.

Finding 3: Out-of-bounds pointer arithmetic in inftrees.c (Low)
https://github.com/madler/zlib/commit/6a043145ca6e9c55184013841a67b2fef87e44c0
https://github.com/madler/zlib/commit/9aaec95e82117c1cb0f9624264c3618fc380cecb

Finding 4: Undefined left shift of negative number (Low)
https://github.com/madler/zlib/commit/e54e1299404101a5a9d0cf5e45512b543967f958

Finding 5: Big-endian out-of-bounds pointer (Low)
https://github.com/madler/zlib/commit/d1d577490c15a0c6862473d7576352a9f18ef811

Alternate Solution for Finding 2
The Zlib development team pointed out that compilers would not be able to
vectorize and unroll that code if it were one loop, and that performance is critical.

On the next page is a potential crc32_little that avoids a strict aliasing violation.
We have verified that recent versions of clang and gcc optimize the memcpy to a
memory load, even without specifying an optimization level. We have tested but not
profiled this as a possible solution.

If the proposed solution does not meet performance goals, and there is not a
simple way to both keep the manually unrolled loops and not use buf4, another
option would be to add -fno-strict-aliasing to build flags or the may_alias attribute to
buf4, for compilers that support such features.

https://github.com/madler/zlib/commit/3fb251b363866417122fe54a158a1ac5a7837101
https://github.com/madler/zlib/commit/6a043145ca6e9c55184013841a67b2fef87e44c0
https://github.com/madler/zlib/commit/9aaec95e82117c1cb0f9624264c3618fc380cecb
https://github.com/madler/zlib/commit/e54e1299404101a5a9d0cf5e45512b543967f958
https://github.com/madler/zlib/commit/d1d577490c15a0c6862473d7576352a9f18ef811

Potential changes to crc32_little (crc32.c):

#define DOLIT4 memcpy(&v, buf, sizeof(z_crc_t)); \

 c ^= v; buf += sizeof(z_crc_t); \

 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \

 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24];

#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4

/* === */

local unsigned long crc32_little(crc, buf, len)

 unsigned long crc;

 const unsigned char FAR *buf;

 unsigned len;

{

 register z_crc_t c;

 z_crc_t v;

 c = (z_crc_t)crc;

 c = ~c;

 while (len && ((ptrdiff_t)buf & 3)) {

 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);

 len--;

 }

 while (len >= 32) {

 DOLIT32;

 len -= 32;

 }

 while (len >= 4) {

 DOLIT4;

 len -= 4;

 }

 if (len) do {

 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);

 } while (--len);

 c = ~c;

 return (unsigned long)c;
}

https://github.com/madler/zlib/blob/50893291621658f355bc5b4d450a8d06a563053d/crc32.c#L247-L278

About Trail of Bits
Since 2012, Trail of Bits has helped secure some of the world's most targeted
organizations and devices. We combine high-end security research with a real-world
attacker mentality to reduce risk and fortify code.

Our clientele - ranging from Facebook to DARPA - lead their industries. Their
dedicated security teams come to us for our foundational tools and deep expertise
in reverse engineering, cryptography, virtualization, malware behavior and software
exploits. We help them assess their products or networks, and determine the
modifications necessary for a secure deployment. We're especially well suited for
the technology, finance and defense industries.

After solving the problem at hand, we continue to refine our work in service to the
deeper issues. The knowledge we gain from each engagement and research project
further hones our tools and processes, helping us extend software engineers'
abilities. We believe the most meaningful security gains hide at the intersection of
human intellect and computational power.

About TrustInSoft
TrustInSoft provides exhaustive source code analyzers deployed in safety critical
domains, such as aeronautics, defense, energy, railways, space, and telecom.
TrustInSoft reduces cyber risks and lower the cost of designing safety-critical
systems. These solutions validate mission-critical software and eliminate attack
vectors, both allowing more efficient use of limited resources, and reducing
liabilities. TrustInSoft's solutions rely on a combination of formal method
techniques that, together, deliver powerful and efficient solutions for
high-assurance software security analysis.

