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Abstract

A key challenge in dynamic information flow analysis is handling
implicit flows, where code conditional on a private variable updates
a public variable x. The naive approach of upgrading x to private
results in x being partially leaked, where its value contains private
data but its label may be either private (on this execution) or public
(on an alternative execution where the conditional update was not
performed). Prior work proposed the no-sensitive-upgrade check,
which handles implicit flows by prohibiting partially leaked data,
but attempts to update a public variable from a private context
causes execution to get stuck.

To overcome this limitation, we develop a sound yet flexible
permissive-upgrade strategy. To prevent information leaks, par-
tially leaked data is permitted but carefully tracked to ensure that
it is never totally leaked. This permissive-upgrade strategy is more
flexible than the prior approaches such as the no-sensitive-upgrade
check.

Under the permissive upgrade strategy, partially-leaked data
must be upgraded to private before being used in a conditional
test. This paper also presents an automatic dynamic analysis tech-
nique for inferring these upgrade annotations and inserting them
into the program source code. The combination of these techniques
allows more programs to run to completion, while still guarantee-
ing termination-insensitive non-interference in a purely dynamic
manner.

1. Introduction

JavaScript has become the dominant language for client-side web
development. Once relegated to form validation and similar small
tasks, JavaScript today has become a major component of the Web
2.0 architecture; applications such as Google Maps and Gmail rely
on it heavily to give online applications the interactive features pre-
viously limited to the realm of desktop applications. Browser ven-
dors have spent a good deal of effort on their JavaScript implemen-
tations, so that recent versions have become tremendously fast [17].

But as JavaScript’s role has grown, its security vulnerabilities
have become more significant. Most prominently, cross-site script-
ing (XSS) has become one of the most pervasive computer secu-
rity vulnerabilities. Mashups [27], where code is combined from
multiple sites, are particularly problematic, and yet they are very
popular. In response, a wide array of security mechanisms have
been put in place. The same origin policy [30] is one of the old-
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est, beginning with early versions of Netscape. However, this only
addresses the interaction of different pages, and recently the use
of XmlHttpRequest objects [42]. It does very little to control the
interaction of scripts loaded in the same page. To give developers
greater freedom, Mozilla developed a system for signed scripts [29]
and Internet Explorer created Security Zones [28]. Unfortunately,
the permissions granted by these two systems have little overlap,
making developing secure applications that will function correctly
across all browsers extremely difficult. Other strategies have in-
volved limiting JavaScript to only a subset of language features;
this is the approach taken by Facebook with FBJS [14] and Google
with Caja [18]. This list covers only a portion of the total security
mechanisms focused on JavaScript and the browser.

The error-prone nature of software systems suggests that critical
security policies are best enforced by small trusted modules, rather
than being an emergent property of complex and buggy application
code. Just as memory-safe languages provide a resilient defense
against buffer-overrun vulnerabilities, violations of privacy or data
integrity expectations need a similar systemic solution. While these
concerns apply to a wide variety of programs, they are particularly
relevant in a browser setting where code fragments from multiple
untrusted or semi-trusted servers execute within the same process.

Information flow analysis is a compelling option for solving
these issues. It gives a stronger guarantee that confidentiality and
integrity are protected, while being arguably less restrictive than
some measures currently being used. Much prior work has focused
on providing information flow security guarantees via type-based
static analyses [8, 21, 32, 41, 43]. In general, static analyses are
often preferred for their advantages in performance and because of
their ability to reason about all paths of execution. Unfortunately,
type-based static analyses are not applicable to browser-based ap-
plications written in JavaScript, which is a dynamically typed lan-
guage. Instead, our work focuses on enforcing information flow
policies dynamically rather than statically.

Previous work has already addressed the performance concerns
of using dynamic analysis [4], but verifying information flow prop-
erties via a purely dynamic analysis is rather tricky. The central
correctness property we wish to enforce is termination-insensitive
non-interference, which says that changing the private inputs to an
application should not influence any of the public outputs.! Veri-
fying this property dynamically requires simultaneously reasoning
about the current actual execution of the program, as well as possi-
ble alternate executions of the program on the same public inputs
but different private inputs.

Dynamic analysis can reason precisely about the actual execu-
tion, but simultaneously reasoning about possible alternate execu-
tions is rather difficult, particularly when the alternate execution
could execute different code and update different memory loca-
tions than the actual execution. A particular challenge is handling

! As in other approaches, the termination channel may leak one bit of data,
or somewhat more in the presence of intermediary outputs [3].
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Figure 1: A JavaScript function with implicit flows

x=false’ x=true’
Function £ (x) All strategies Naive No Sensitive Upgrade Permissive Upgrade
y = true; y = true® y = true® y = true® y = true®
z = true; z = true’ z = true’ z = true” z = true’
if (x) branch not taken branch taken, pc = H branch taken, pc = H branch taken, pc = H
y = false; y remains true” y updated to false® stuck y updated to false”
if (y) branch taken, pc = L branch not taken stuck, infer upgrade
z = false; z updated to false” z remains true”
return z; returns false” returns true”
Return Value: false” true”

implicit flows, when code whose execution is conditional on private
information updates a public variable.

The code fragment in Figure 1 captures the essence of this diffi-
culty in a simple example. This code defines a function f that takes
as a private boolean argument x, initializes two public variables y
and z to true, and then conditionally updates both of these vari-
ables before returning z. Thus, information flows from the private
argument variable x into y and then into z, and the challenge is to
track this information flow dynamically so that z is also labeled as
private. The security label H denotes private or high confidentiality
data, and conversely L denotes public or low confidentiality data.
Tracking the information flow due to a conditional assignment that
does not happen is particularly difficult, as we discuss below.

Naive: An intuitive (but ineffective) strategy for handling the first
conditional assignment to y is to upgrade the label on y to H, since
that assignment is conditional on the private variable x. In the case
where x is true” then y becomes false”, and is appropriately
labeled private; however, if x is false’ then y remains true’ and
is still labeled public. Thus, we say that the variable y is partially
leaked, since y now contains private information but y is labeled
private on only one of these two executions.

Continuing the example, we now perform a second conditional
assignment to z, which is initially true”. The result of these two
conditionals is that z is labeled public, but contains the value of the
private input x. That is, if x is true® then y becomes false’ and
z remains true’; conversely, if x is false’ then y remains true”
and so z becomes false”. Thus, the naive approach to handling
implicit flows permits both partially leaked data (in y) and totally
leaked data (in z), and fails to provide termination-insensitive non-
interference.

No-Sensitive-Upgrade: The above intuitive approach of simply
upgrading the security label of the conditionally assigned variable
is inadequate. A proposed solution uses the no-sensitive-upgrade
check [4, 43], whereby execution will fail-stop or get stuck when-
ever data would be partially leaked. Under this strategy, the assign-
ment to the public variable y from code conditional on a private
variable x would get stuck.

Although this strategy satisfies termination-insensitive non-
interference, it also rejects many valid programs that have no in-
formation leak. To illustrate this limitation, consider the following
code snippet where the input x is private:

y = false;
if (x) { y = true; }
return true;

Figure 2: The implicit flow function with upgrade annotations

Permissive Upgrade
Function £ (x) x=false x=true”
y = true; Yy = true® Yy = truel
z = true; z = trueL z = trueL
if (x) branch not taken branch taken, pc = H
y=false; y remains true” y updated to false”
if (<H>y) branch taken, pc = H branch not taken
z=false; z updated to false” z remains true”
return z; returns false® returns true”
Return Value: falsel truel

Although no information leak would occur, this program would get
stuck under the no-sensitive-upgrade approach (and would also be
rejected by many static analyses).

Permissive-Upgrade: The goal of this paper is to enable more ap-
plications to run to completion than under the no-sensitive-upgrade
check, while still providing strict information flow security guar-
antees. Interestingly, flow-sensitive analyses [22] are capable of ac-
cepting programs like the one above without violating soundness.
To date, flow-sensitive analysis has largely focused on static ap-
proaches. This paper introduces permissive upgrades and brings a
significant amount of flow-sensitivity to a sound and purely dy-
namic analysis.

Our proposed permissive-upgrade strategy tolerates and care-
fully tracks partially leaked data, while still providing termination-
insensitive non-interference. The central idea is to introduce an ad-
ditional label P to identify and track partially leaked data:

The security label P identifies partially leaked data that
contains private information but which may be labeled as
public in some alternative executions.

Thus, at the conditional assignment to y in Figure 1, if x is false™
then y remains true”, as the assignment is not performed. If x is
true’, however, then y is updated to £ alse”, where the label P
reflects that in other executions y may remain labeled public.

Such partially leaked data must be handled quite delicately. In
particular, if y is ever used in a conditional branch, as in the second
conditional of Figure 1, then the permissive-upgrade strategy still
gets stuck in order to avoid converting a partial information leak
into a total information leak.

To avoid getting stuck in this situation, the conditional test
expression y can be upgraded to private before the conditional test,
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as shown in Figure 2. This upgrade operation
<H>y

converts both public (L) and partially leaked (P) data to private
(H). Critically, upgrading partially leaked data to private is sound
since, as a consequence of the upgrade operation, the resulting data
is labeled private on a/l executions, including alternative executions
where y was originally labeled public. Thus, we can avoid stuck
executions simply by inserting upgrade annotations at all sensitive
uses of partially leaked data. Sensitive uses include conditional
branches, as described above, but also other operations such as
indirect jumps, virtual method calls, etc. Once all the necessary
upgrade annotations are in place, program execution will never fail-
stop (although it may diverge). Any results returned will be labeled
in a way that accounts for any influence from private data, including
via implicit flows.

Upgrade Inference: Finding all of these annotation points man-
ually, however, can be an onerous task. This overhead is problem-
atic since convincing developers to adopt different security tools
is always something of a challenge. Especially when extra work is
required, resistance to adoption can be fierce.

Fortunately, we can extend the permissive upgrade semantics to
minimize the burden placed on developers. Whenever a program
would get stuck based on an attempted sensitive use of partially
leaked data, the runtime engine can infer the needed security label
upgrade. Over time, these upgrades will gradually improve the pre-
cision of the analysis, rejecting fewer and fewer programs. Indeed,
the upgrades could be determined entirely through a testing phase,
making the developers’ burden negligible.

We present an extension of our permissive upgrade evaluation
semantics that also infers these upgrade annotations. In situations
where our original semantics would get stuck because of a sensitive
use of partially leaked data, the extended semantics automatically
inserts the appropriate upgrade annotation instead, and so continues
execution. Thus, the conditional test “if (y)” is automatically
converted to “if (<H>y)”.

In practice, we envision these techniques could be applied as
follows: A JavaScript web application is initially released in an in-
strumented form that uses the extended semantics to infer upgrade
annotations. The extended semantics never gets stuck but does not
(yet) provide information-flow guarantees. Once the set of dynami-
cally inferred annotations appears to converge (which must happen,
since the program is finite), the appropriately annotated application
could be re-released under the original permissive-upgrade seman-
tics, with strong information-flow guarantees. Subsequently, some
executions may still get stuck, but these are likely to be few, and can
immediately be used to annotate the application, preventing subse-
quent executions from getting stuck at the same sensitive operation.
In this manner, the difficulty of inferring upgrade annotations can
be amortized over a large collection of users.

We hope that these annotation-inference techniques may help
migrate existing Javascript web applications into a more se-
cure world, where information flow policies are tracked and en-
forced by the language runtime itself. This deployment strategy
does require information-flow support in the browser’s JavaScript
implementation—in ongoing work with Mozilla, we are exploring
how to incorporate such extensions in the Firefox browser [13].

In summary, the key contributions of this work are that it:

e presents the permissive upgrade semantics, which allows more
programs to complete than prior purely-dynamic approaches;

e proves that the proposed permissive upgrade semantics satisfies
termination insensitive non-interference;

e shows how upgrade annotations can prevent undesirable stuck
executions in this semantics; and

Figure 3: The source language \™°
I 1

Syntax:
e = Term
T variable
c constant
Azx.e abstraction
e1 es application
ref e reference allocation
le dereference
e:=e assignment
(H)e labeling operation
T,Y, 2 Variable
c Constant

Standard encodings:

true & AL A\Y.x
def
false = Az \yy
if ) then ey else e = (e1 (M\d.e2) (Md.e3)) (A\z.x)
if e; then es def if e; then es else 0
let z=e; ines def (Az.e2) e1
e1; e 4 Jetz=e;in e2, x & FV(e2)

e proposes an analysis technique for inferring appropriate up-
grade annotations dynamically.

The presentation of our results proceeds as follows. We for-
malizes our ideas for an idealized dynamically typed language,
which is described in Section 2. Section 3 presents our permissive-
upgrade semantics and Section 4 proves key non-interference prop-
erties for this semantics. Section 5 formalizes how upgrade annota-
tions can be inferred dynamically. Section 6 discusses related work,
and Section 7 concludes.

2. A Core Language for Information Flow

We formalize our permissive upgrade strategy in terms of A™°, an
imperative extension of the lambda calculus described in Figure 3.
The lambda calculus has a rich tradition as a foundational test-
bed for research in programming languages and type theory, and
we believe that it is equally effective platform for investigating
information flow security.

Terms include variables (), constants (¢), functions (Ax.e), and
function application (e; ez). Constants include integers as well as
primitive operations such as “+”. Since many of the challenges in
information flow analysis come from imperative updates, our lan-
guage supports mutable reference cells, including terms for allocat-
ing (ref e), dereferencing (!e), and updating (e : = e2) a reference
cell. Finally, there is a term for labeling data as private ({H )e).

This language is much simpler than JavaScript, but we believe
it allows us to deal with many of the essential complexities of
implicit flows while minimizing syntactic clutter. We note that
many additional constructs can be built from this core; the second
part of Figure 3 sketches some standard encodings for booleans,
conditionals, let-expressions, and sequential composition.

As an illustrative example of A", Figure 4 translates the im-
plicit flow function f (x) shown in Figure 1 from JavaScript into
A"°_The translated function proceeds in an analogous manner to
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Figure 4: The implicit flow function £ translated into \*°
I 1

AX.

let y = ref true in
let z = ref true in

if x then

y := false;
if !y then

z := false;
'z

the original function, except that JavaScript mutable variables are
now represented as reference cells. The A" version creates two
public reference cells y and z and conditionally updates both of
them. It then returns the value of the reference cell z via the deref-
erence operation !z.

3. Three Evaluation Strategies for Implicit Flows

We next formalize the permissive upgrade evaluation strategy for
the idealized language A\™°. For completeness, we also formalize
the two other evaluation strategies (naive and no-sensitive-upgrade)
discussed in the introduction. Figure 5 presents the core semantics
that is common to all evaluation strategies.

The semantics includes both public (L) and private (/) labels,
as well as the partially leaked label (P), which is used exclusively
by the permissive-upgrade semantics. In a more general setting
with multiple principals, each security label would have the type

Principal — {L, H, P} .

Our approach extends to this more general setting, but for clarity
of exposition we present our ideas in a simpler setting with just a
single principal and a three element label lattice. Labels are ordered
by

LCHLCP

reflecting the constraints on how correspondingly labeled data is
used, noting that partially leaked data must be handled in a more
restrictive manner than private or public data. We use Ll to denote
the corresponding join operation on labels.

In the evaluation semantics, each reference cell is allocated at
an address a. A store o maps addresses to values. A raw value
r is either a constant (c), an address (a), or a closure (Az.e, @),
which is a pair of a A-expression and a substitution 6 that maps
variables to values. A value v has the form r*, which combines
both an information flow label & € {L, H, P} and a raw value .
We use () to denote both the empty store and the empty substitution.

Figure 5 defines the semantics of A/ via the big-step evaluation
relation:

!
0,0,e{pc o, v

This relation evaluates an expression e in the context of a store o,
a substitution 6, and the current label pc of the program counter,
and returns the resulting value v and the (possibly modified) store
o’. The program counter label pc € {L, H} reflects whether the
execution of the current code is conditional on private data.

The rules defining this evaluation relation are mostly straight-
forward, with some notable subtleties on how labels are handled.
In particular, we adopt the invariant that the label on the resulting
value v is at least as secret as the program counter (pc = label(v)).
Thus, for example, the [cONsT] rule evaluates a const c to the la-
beled value c¢”°. The [FUN] rule evaluates a function (Az.e) to a
closure (Az.e,0)P¢ that captures the current substitution and that

Figure 6: A secure function
I 1

Function g(x) x=false’ x=true”
Both NSU | Perm. U.
let y = ref true in true” true” | true’
if x then y:=false; truel stuck | falsef
y:=true; true” true”
y
Return Value: true” true”

includes the program counter label. The [vAR] rule for a variable
reference x extracts the corresponding value 6(z) from the environ-
ment and strengthens its label to be at least pc, using the following
overloading of the join operator:
(rl) Uk 00k

The [LaBEL] rule for (H)e explicitly tags the result of evaluating
e as private, ignoring the original label k. The [APP] rule applies
a closure to an argument; to avoid information leaks, this rule gets
stuck if the closure is partially leaked. The [prIM] rule applies func-
tion primitives. The [REF] and [DEREF] rules create and dereference
a reference cell, respectively.

From these rules, we can derive corresponding evaluation rules
for the encoded constructs, which are also shown in Figure 5.
Critically, the [THEN] and [ELSE] rules get stuck if the conditional
is partially leaked.

Assignment statements are notably missing from Figure 5 since
they introduce difficult problems with implicit flows. Below, we
formalize the three strategies for tracking implicit flows as three
different rules for evaluating across assignment statements.

We also illustrate these strategies on the example function
f(x) shown in Figure 4. In the situation where the argument x
is false’, all three evaluation strategies return false’. The fol-
lowing subsections describe how different strategies handle the
tricky case where x is true” and where £ must update the public
reference cell y.

3.1 The Naive Approach

The intuitive approach for assignment is to promote the label on the
reference cell to at least the label k on the address a”. (Note that a
global evaluation invariant ensures that pc C k.)

g, 0761 U’pc Ul7ak
0—170762 ‘U’PC 02,V
0,0, (e1:=€2) Ypc o2[a := (VU k)],v

[ASSIGN-NAIVE]

For the function call £ (true® ), this strategy updates y to false’
but leaves z as true”. Thus, by comparing the return value for the
All strategies and Naive column of Figure 1, we see that the result
of £(x) is a publicly labeled copy of its private argument, and so
this naive approach leaks information.

3.2 The No-Sensitive-Upgrade Approach

The no-sensitive-upgrade (NSU) approach avoids information
leaks by getting stuck if a public reference cell is updated when
the pc is private, or when the label on the target address is private.
(In an implementation such stuck states might cause an exception
to be thrown to the top level.)

The following rule requires that the label k on the target address
a® is at most the label on the reference cell contents. This rule
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Figure 5: Core semantics for \"°

Runtime Syntax:

a c Address

o € Store

0 S Subst

r S RawValue

v S Value
k,l,pc € Label

. . ’
Evaluation Rules:

[CONST]
[VAR]

0,0,z {pe o, (0(x) U pc)
[APP]

a,0,e1 Upe o1, (A:c.e,@’)k
k4P
01,0, e2 {pc 02,02
02,0 [z :=va],e i o', v
0707 (61 62) ‘U’PC UI,U

[REF]
a,0,epc o'\v
a ¢ dom(o")
0,0, (ref e) Ypc o'[a :=v],a”

Derived Evaluation Rules:

[THEN]
0,0,e1 {pe 01, (t‘rue,@)’c
k# P
01,0,es 1 o', v
0,0, (if e1 then es else e3) pe o', v

[LET]
0',0,61 llpg g1,V1
01,0z :=v1],e2 Ype 0’0
0,0,(let z=e1 ines) Ypc o', v

Address —p Value
Var —, Value

= clal| (Az.e,0)
= L|H|P

[FUN]
a,0,(Azx.e) Jpc o, (Azx.c,0)P°
[LABEL]
0,0,e pc o', r*
g, 97 <H>€ ‘UPC 0/7 TH
[PRIM]
g, 97 €1 ‘uPC g1, ck
01,9562 Upc 027dl
r = [](d)
g, 07 (61 62) lipc 02, rkul
[DEREF]
0,0,e o', a"
a,0,'e p. o', (o' (a) Uk)
[ELSE]

g, 97 €1 U’PC 01, (fCLl867 e)k
k#P

!
0-179763 ‘U’k g,V
0,0, (if e1 then es else e3) pc o', v

[SEQ]
0,9,61 ‘Upc 01,01
’
0’1,0,62 U’PC g ,v

g, 93 (61; 62) ‘U’PC U/a v
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assumes all data is labeled public or private, but never partially
leaked.

0,6,e1 dpe o1, a”
0—170762 ‘U’ZJC 02,0
k C label(o2(a))
0,0, (e1:=€2) {pc o2[a := (VU EK)],v

[ASSIGN-NSU]

For our example function, the call £ (true®) would get stuck
on the update to the public variable y within a private branch of
execution, as illustrated by the NSU column of Figure 1, preventing
the information leak.

Unfortunately, the NSU strategy may also get stuck on code
that does not leak information, as shown in Figure 6. Although
there is no information leak, evaluation of g(true™) gets stuck
when the private parameter x is partially leaked. Thus, the NSU
strategy satisfies termination-insensitive non-interference, but is
unnecessarily restrictive.

3.3 The Permissive-Upgrade Approach

The permissive-upgrade semantics introduces an additional label
(P) in order to tolerate and track partially leaked data. This strategy
allows us to defer the point of failure and reduce the number of
false positives, introducing some degree of flow-sensitivity to our
analysis.

The rule [ASSIGN-PERMISSIVE] below considers an assignment
to an address o that currently holds a value labelled . The rule
requires that the address is not partially leaked (k # H).

[ASSIGN-PERMISSIVE]
ag, 9, €1 l}pc al,ak
01,0,e2 {pc 02,0
I = label(o2(a))
k#P
m = lift(k,1)
0,0, (e1:=e2) Jpc 02[a := (vUmM)],v

The rule uses the following function lift(k, 1) to infer the new label
m for the reference cell.

k l lift(k, 1)
L | any L
H| L P
H| H H
H| P P

We consider each possible combination of labels k and {:

e If the target address is public (k = L), then execution is not in
a private context (due to the evaluation invariant that pc C k).
In this situation there are no difficulties with implicit flows, so
m = L.

e Conversely, if the target address or execution context is private
(k = H), then an attempt to update a public reference cell
(I = L) results in the new contents being labeled as partially
leaked (m = P).

e Updating a private cell from a private context is fine, and results
in a private cell.

e Finally, updating a partially leaked cell from a private context
leaves the cell as partially leaked.

For the function call f (true’?) from Figure 1, the permissive
upgrade strategy handles the first conditional assignment by mark-
ing y as partially leaked, but gets stuck on the second conditional
test, to avoid information leaks.

We can remedy this situation by introducing the upgrade anno-
tation <H>:

if (<H>!y) then z := false;

This upgrade annotation ensures the test expression is private on
both executions, rather than partially leaked on one execution and
public on the other. The modified function £ now runs to comple-
tion on all boolean inputs. Section 6 discusses how to infer these
upgrade annotations automatically.

Figure 6 demonstrates that, under the permissive-upgrade strat-
egy, the function g runs to completion on all boolean inputs (unlike
under NSU). More generally, the following theorem shows that any
execution that does not get stuck under NSU evaluation (denoted

pe) will also not get stuck under permissive upgrade evaluation
(denoted |} ). Thus, the permissive upgrade strategy is strictly su-
perior to NSU. For the proof of this theorem, we refer the interested
reader to a related technical report [5].

THEOREM 1. Suppose o, 0, and pc do not contain the partially
leaked label P and 0,0, e |5 o', v. Then 0,0, e {pc o', v, and o’
and v do not contain P.

Partially leaked data must be handled carefully, since on an al-
ternative execution this data might be labeled as public. In partic-
ular, function calls, conditionals, and assignments are considered
sensitive operations; these operations get stuck (via the antecedent
k # P) if applied to partially leaked data (as otherwise our in-
formation flow analysis could not track how alternative executions
may propagate partially leaked information). These stuck sensitive
operations are critical for avoiding information leaks, and they dis-
tinguish the permissive-upgrade approach from the unsound naive
approach.

To motivate why assighment statements must also be considered
sensitive operations, consider the function h(x) shown in Figure 7.
This function allocates two reference cells y and z, initializes w
as a pointer to y, and then, depending on the private argument x,
conditionally updates w to point to z. At this stage, w is partially
leaked, since whether it points to y or z depends on the input
argument x. Any attempt to update the value of the reference cell
pointed to by w would result in totally leaked data, and must be
precluded by the evaluation getting stuck at the indirect assignment

('w) := false

as shown in the third column of Figure 7.

The right hand side of Figure 7 illustrates how upgrade annota-
tions overcome this limitation. The new function h_ann is identical
to h, except that it upgrades the target address before the assign-
ment, as in:

(<H>('w)) := false

which allows this function to complete without information leaks.
In particular, the revised assignment now updates y to false”, and
so the return value from this function is clearly marked as partially
leaked.

4. Termination-Insensitive Non-Interference

We now verify that the permissive-upgrade strategy guarantees
termination-insensitive non-interference. The details of this cor-
rectness proof are necessarily quite involved, and could perhaps be
skipped on a first reading.

The traditional non-interference argument is based on an equiv-
alence relation between states that is transitive. However, the in-
troduction of partially leaked data in our semantics significantly
complicates this proof, since the values true” and false® are
considered equivalent, as are £ alse’ and false”, but true” and
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Figure 7: An example of a function with a sensitive assignment

Permissive Upgrade

Function h(x) x=false” x=true”
let y = ref true in Yy = true” Yy = truel
let z = ref true in z = truel z = true’
let w = ref y in wzyL w:yL
if (%) branch not taken pc=H

then w := z; w remains y” w updated to 2%

('w) := false; y = falsel stuck
'y returns false®
Return Value: false®

Permissive Upgrade

Function h_ann (x) x=false” x=true”
let y = ref true in Yy = true® Yy = true”
let z = ref true in z = truel z = truel
let w = ref y in w=1y" w=gy"
if (x) branch not taken pc=H

then w := z; w remains y” w updated to z”
<H>(!w) := false; y = false® z = false®l
'y returns false’ returns true”
Return Value: falsel truel

false® are not equivalent. Thus, the desired “equivalence” relation
is no longer transitive, and so we call it a compatibility relation (~)
instead. Intuitively, two stores are compatible if they differ only on
private data, and executions that start with compatible stores should
yield compatible results. In more detail, we define the compatibility
relation (~) on labels, values, substitutions, and stores as follows.

e Two labels are compatible if both are private or one is partially
leaked:

def

ki ~ ko - (klakZ)e{(H7H)7(P7_)a(_7P)}

Label compatibility is neither reflexive (as L ¢ L) nor transi-
tive (as L ~ P~ Lbut L o4 L).

e Two values are compatible if either their labels are compatible
or the labels are identical and the raw values are compatible.

k1 ko def
Tl ~ 7’2 =

Ei~ka V (k1 =Fk2 A ri~ra)
e Two raw values are compatible if they are identical or they are
both closures with identical code and compatible substitutions:
def
TL ~ T2 =
ri=r2 V(r1 = (Az.e,01) Ara = (Az.e,02) ANO1 ~ 62)

e Two substitutions are compatible (written 61 ~ 65) if they have
the same domain and compatible values:
0 ~ 0, X

dom(61) = dom(02) AVx € dom(61). (61(x) ~ O2(x))

e Two stores o1 and o2 are compatible (written o1 ~ o2) if they
are compatible at all common addresses:

def

o1~o2 = Va€(dom(o1)Ndom(o2)). o1(a) ~ o2(a)

We also introduce an evolution (or can evolve to) relation (~+)

that constrains how evaluation with a private program counter can

update the store. This relation composes in a transitive manner with
compatibility: see Lemma 6 below.

e Label k1 can evolve to ko if both labels are private or k> is
partially leaked:

def

k1~ ko = ki=ko=H V ka=P

k ko g
e A value ;! can evolve to r4? if either the two values are equal
or k1 can evolve to ka:

k1 ky  def k1 ko

it~y = rit=ry> V ki~ke

e A store o1 can evolve to o2 if every value in o1 can evolve to
the corresponding value in o2:
def
g1 ~*> 02 =
dom(o1) C dom(o2) A Va€ dom(o1). o1(a) ~ o2(a)
The evolution relation captures how evaluation with a private pro-
gram counter can update the store.

LEMMA 1 (Evaluation Preserves Evolution).
Ifo,0,e g o' ,vtheno~s o'

In order to prove Lemma 1, we note some important properties of
the ~» relation.
LEMMA 2. VYm. m ~ lift(H, m).

We note that the evolution relation is transitive, and that it is
reflexive for both values and stores.

LEMMA 3. ~» is transitive.
LEMMA 4. ~» on values and stores is reflexive.

The evolution relation on values interacts in a “transitive” manner
with the compatibility relation.

LEMMA 5. If v1 ~ va ~> vs then v ~ v3.

PROOF If vo = w3 then the lemma trivially holds. Otherwise let
v; = rf * and consider the possibilities for ko ~» k3.

e Suppose k2 = k3 = H.Then k; € {H, P} and so k1 ~ ks.
e Suppose k3 = P. Then k1 ~ k3.
|

With these characteristics established, we are now able to prove
Lemma 1.

PROOF The proof proceeds by induction on the derivation of
0,0,e Ju o',v and by case analysis on the final rule in the
derivation.

® [CONST], [FUN], [VAR]: ¢’ = 0.

® [APP], [PRIM], [LABEL], [DEREF]: By induction.
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e [REF]: 0 and o’ agree on their common domain.

® [ASSIGN-PERMISSIVE]: In this case, e = (e1 :=e2) and we have:

0,9761 »UH 01,aH
01,0,e2 g o2,v
I = label(o2(a))
m = lift(H,1)
o' = oaa:= (vUm)]

By induction, ¢ ~» 01 ~» 2. By Lemma 2, [ ~ m. Hence
o2(a) ~» (vUm) and so og ~» 0.

If two stores are compatible (o1 ~ o2), then evolution of one
store (o2 ~ o3) results in a new store that is compatible to the
original stores (o1 ~ o3), with the caveat that any newly allocated
address must not be in the original stores.

LEMMA 6 (Evolution Preserves Compatibility of Stores). If o1 ~
o2 ~ o3 and (dom(o1) \ dom(cz2)) N dom(os) = O then
g1 ~ 03.

PROOF Let D = dom(o1) N dom(os). Then D T dom(o2).
This means that Va € D. o;(a) ~ o2(a) and o2(a) ~ os(a).
Therefore, by Lemma 5:

Va € D.oi(a) ~ os(a)

Hence by the definition of the evolution relation, o1 ~ o3.

Next, we first observe certain properties of labels. First of all, if
two labels are compatible, then joining any other labels to either or
both of the original labels will still result in compatible labels.

LEMMA 7. Ifk1 ~ ko then (l1 LJ k1) ~ (lz L kz)

Also, if two labels are compatible and are part of different values,
those values will also be compatible.

LEMMA 8. Ifk:1 ~ ko then (’U1 L kl) ~ (’U2 LJ kz)

Finally, in a secure context (H as the first argument to the lift
function), all labels are compatible.

LEMMA 9. lift(H,l1) ~ Lift(H,l2).

Finally, we prove our central result: if an expression e is exe-
cuted twice from compatible stores and compatible substitutions,
then both executions will yield compatible resulting stores and val-
ues. That is, private inputs never leak into public outputs.

THEOREM 2 (Termination-Insensitive Non-Interference). Suppose
pc € {L,H} and 01 ~ o3 and 61 ~ 0 and 0;,0;,¢e |pe 0}, v;
fori € 1,2. Then o ~ ob and vi ~ va.

PROOF The proof is by induction on the derivation o1, 61, € {pc
o', v1 and case analysis on the last rule used in that derivation.

e [consT): Thene = cand 0] = 01 ~ 02 = 05 and v1 = V2

cPe.

e [vaR]: Then e = z and 0] = 01 ~ 02 = ohand v; =
(01(2) Upc) ~ (02(z) U pc) = va.

e [FUN]: Then e = Mz.e’ and 0] = 01 ~ 02 = 0h and

v1 = (Az.€’,01)7° ~ (Ax.€’,02)"° = va.

e [LABEL]: Then e = (H)e'. From the antecedent of this rule, we
have that for ¢ € 1, 2:

k.

i
k3

/ /
0'7;,02‘,6 ‘U’PC 0, T

By induction, o; ~ o%. Also, regardless of the raw values 71
and ro, 7 ~ & by the definition of the compatibility relation.

e [APP]: In this case, e = (eq €p), and from the antecedents of
this rule, we have that fori € 1, 2:

" NE;
Ui70i76a ‘upc a; ,()\:c.ei70i) ‘
ki # P
1" mr ’
oi,0i,e0 dpe 07, V5
i o /
g; 701'[1’ = Ui]&i Yk, o5, vi

By induction:

o ~ay
o_i// ~ O_é//
(\z.e1,0)* ~ (\z.eq, 05)%2
V] ~ v
= If k1 and k2 are both H then v; ~ w2, since they both have
label at least H. By Lemma 1, o}’ ~+ o,. Without loss
of generality, we assume that the two executions allocate

reference cells from disjoint parts of the address space,” i.e.:
(dom(a}) \ dom(ai")) N dom(o5_;) = 0

Under this assumption, by Lemma 6 o{’ ~ o4. Applying
Lemma 6 again gives o] ~ o5.

= Otherwise 6] ~ 05 and e; = e3 and k1 = k2. By induction,

o1 ~ o5 and v{ ~ v4, and hence v} ~ v5.

e [priM]: In this case, e = (eq €p), and from the antecedents of

this rule, we have that for¢ € 1, 2:

1o ki
Ui70iaea llpc a; 7Ci1

0-;/7 01'7 €a ‘U’pc 0',(, dil
ri = [ei](ds)

By induction:

1" 1" ! !/
o1 ~ 02 g1 ~ 02
k1 k2 l1 lo
€1 ~ Gy di' ~d;

= If either k1 ~ kg or l1 ~ l2, then by Lemma 7 k1 U [; ~
k2 U l. Therefore, ritHh ~ ph2tiz

= Otherwise, 71 = 72, since ¢1 = c2 and di = da. Also,
K1 U1y = ko U Io. Therefore, rit™t ~ ph2ti2,

e [ReF]: In this case, e = ref e’. Without loss of generality,
we assume that both evaluations allocate at the same address
a ¢ dom(o1) U dom(o2), and so a?® = v1 = vz. From the
antecedents of this rule, we have that for ¢ € 1, 2:

0i, 01'7 e/ ‘upc 0_;/7 /U;
’ " !
oi = 07 [a = vj]
By induction, o ~ ¢4 and v] ~ v}, and so o} ~ o%.

e [DEREF]: In this case, e = !¢’, and from the antecedents of this
rule, we have that for i € 1, 2:

/ 1k
Ui19i>e upc Ui7a/il
’
v = O’i(ai) U k;

. . k k
By induction, o] ~ o5 and a;* ~ as?.

= Suppose a’fl = aéz. Then a1 = a2 and k1 = k> and
o1(ar) ~ o5(az), and s0 v1 ~ va.

k k : k k
= Suppose a;' # a,>. Then since a;' ~ a,> we must have
that k1 ~ ko and hence v1 ~ vo from Lemma 8.

2We refer the interested reader to [6] for an alternative proof argument
that does use of this assumption, but which involves a more complicated
compatibility relation on stores.
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® [ASSIGN-PERMISSIVE] In this case, e = (eq:=€p), and from the
antecedents of this rule, we have that for ¢ € 1, 2:
g;, 91‘7 €a ‘Upc 0-;/7 a?i
O—'IL,7 eia €b ‘U’PC 0'7/://, Ui
ki # P
m; = lift(ks, label (o]’ (a;)))

o; = 0i'la; := vi Um,]

By induction:

O,i/ ~ o_é/ Uﬁli ~ o_é//
k k
ayt ~ ay? V1 ~ U2

" If k1 ~ ko then k1 = k2 = H. By Lemma 9, m; ~ mao.
By Lemma 8, (v1 LIm1) ~ (v2 LI m2). Hence o ~ o3.

= Otherwise k1 = ko = L. Then m1 = mo = L and hence
o1 ~ O%.

5. Upgrade Inference

The permissive-upgrade semantics guarantees non-interference
while getting stuck on fewer programs than the NSU semantics,
and it will not get stuck if the program includes upgrade annota-
tions on sensitive uses of partially leaked data.

We now extend our semantics to infer these upgrade annota-
tions. We begin by adding a position marker p € Position on each
sensitive operation (applications and assignments) where partially
leaked data is not permitted.

e = ... |(e1e2)’ | (e1:=¢€2)?

Rather than explicitly insert upgrade annotations at particular posi-
tions in the source code, we instead extend the store o to now also
record the positions where these upgrades have been conceptually
inserted.

We replace the original [aPp] evaluation rule with three variants,
and similarly for [ASSIGN-PERMISSIVE], as shown if Figure 8. The
[aPP-NORMAL] rule applies if an upgrade has not been inserted for
this operation (p € o) and is not needed (k % P). [APP-UPGRADE]
handles situations where the upgrade has been inserted (p € o) by
ignoring the label k£ on the closure and behaving as if the closure
were labeled private instead. [APP-INFER] handles situations where
an upgrade is required (k = P) but has not yet been inserted
(p € o); it adds this position tag to the store (conceptually inserting
the required upgrade) and then reevaluates the application.

Our revised semantics still guarantees non-interference, but
only if the evaluation did not infer additional upgrades. This ob-
servation leads to some interesting design decisions. If output of
the final result is allowed even when there was an inferred upgrade,
then termination-insensitive non-interference is not guaranteed, but
the information leak is detected. If output is forbidden in this case,
then the behavior is identical to the permissive-upgrade semantics.

THEOREM 3 (Non-Interference Of Upgrade Inference). Suppose
pc # Pand oy ~ o2 and 6, ~ 02 and 0,0;,e {pe o}, v; and
P, = (o} \ 04) N Position fori € 1,2. If P, = P> = () then
o1 ~ o5 and v1 ~ va.

We next show that adding some upgrades A to a program only
influences the labels in the program’s result, but not the raw values.

To formalize this property, we introduce a raw equivalence
order (=) that identifies values, substitutions, and stores that differ
only in their labels, not in their underlying raw values. Moreover,
raw equivalent stores are allowed to differ in the position tags that
they include, i.e., o = (o U A).

THEOREM 4 (Non-Interference Of Upgrade Annotations). Suppose

pc # Pand A C Position and 0,0, e {pc 01,v1 and (0 U A),0, e Ypc

o2,v2. Then 01 =~ 02 and v1 = va

We prove this theorem via the following lemma, which strengthens
the inductive hypothesis.

LEMMA 10. Suppose pc # P and o1 =~ o2 and 01 =~ 03 and
0i,0i, e Upe, 07, v fori € 1,2. Then oy ~ 0% and v1 = va.

Proofs for Theorem 3 and Lemma 10 are available in a related
technical report [5].

Interestingly, upgrade inference brings dynamic analysis closer
to static analysis. While both static and dynamic analysis support
termination-insensitive non-interference, dynamic analysis tends to
surrender more information through termination behavior. There
is a class of programs that static approaches will not certify (and
hence will surrender no information), but that dynamic analysis
will execute and permit the attacker one bit of information through
termination behavior per execution.

With upgrade annotations, this class of programs disappears
over time; whenever a program occurs that surrenders a bit of
information, the missing annotation can be determined. Eventually
after enough executions, all paths of the program will have been
explored, and the program will have all of the annotations that it
needs.

6. Related Work

Fenton’s paper on memoryless subsystems [15] is largely the begin-
ning of information flow analysis. Denning’s papers [11, 12] high-
light the challenges associated with implicit flows, and advocate
a static certification approach; since then, static approaches have
dominated because of their generally superior performance and the
perceived advantages in handling implicit flows.

Volpano et al. [41] and Heintze and Riecke [21] are two of the
most well known type-based approaches, though their target lan-
guages are relatively minimal. Pottier and Simonet [32] introduce
a more complex system for Core ML. Chaudhuri et al. [8] create a
type system for handling explicit flows in Windows Vista.

Dynamic approaches have been applied mostly to integrity
problems, including taint analysis for Perl, Ruby, and PHP. In-
tegrity and confidentiality are usually claimed to be dual problems,
but this is disputed. Sabelfeld and Myers [36] note that integrity can
be damaged by a system error without any outside influence. Haack
et al. [19] observe that since format integrity errors are unaffected
by implicit flows, integrity analysis has focused on by dynamic
techniques.

Recently, there has been more appreciation of the complemen-
tary benefits that each approach offers. Many strategies rely primar-
ily on static techniques and insert dynamic runtime checks only in
ambiguous cases [7, 39]. This approach reduces false positives with
a minimum impact on performance. Myers [31] introduced JFlow,
a variant of Java using this hybrid strategy, which was the basis
for Jif [23]. Chugh et al. [10] propose a mostly static approach for
analyzing JavaScript with “holes” for dynamically generated code.

Generally, dynamic analysis is more often applied to client-side
scripting, particularly for JavaScript, where dynamic typing makes
type-based approaches difficult, and the flexibility of the language
makes offline certification ineffective. Vogt et al. [40] reverse the
standard hybrid approach, relying primarily on dynamic checks but
falling back to runtime certification for implicit flows.

Several papers address challenges that are of particular inter-
est to JavaScript. Russo et al. study information flow analysis in
the DOM [35] and timeout mechanisms [33]-both major issues for
JavaScript applications. Askarov and Sabelfeld [2] cover declassi-
fication and analysis of dynamic code evaluation. Magazinius et al.
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Figure 8: Upgrade inference

Evaluation Rules:

[APP-NORMAL]
pgo
0,0, e1 Ype 01, (A\z.e,0)"
k# P
01,0,e2 pc 02,02
02,0 [z :=va],e i o', v
7,0, (e1 €2)? Ipe 0’0

[APP-UPGRADE]
peo
0,0,e1 pe 01, (Ax.e,@')k
01,0,e2 Ype 02,02
02,0 [x :=va],e b o', v
7,0, (e1 e2)? Ipe 0’0

[APP-INFER]
pgo
0,0,e1 pe 01, (Ax.e,@')k
k=P
(U J {p})7 07 (81 62)17 ‘U’PC 0,7 v
ag, 07 (el 62)p U‘pc UI? v

[ASSIGN-NORMAL]

pgo
070761 ‘upc 0’17011c
k# P
0179762 ‘UPC 02,V
1 = lift(k, label(o2(a)))
0,0, (e1:=e2)? {pe o2[a := (vUI)],v

[ASSIGN-UPGRADE]

peoc
070761 ‘upc 0’17011c
01,9,62 lJ/pC g2,V
U = lift(H, label(o2(a)))
0,0, (e1:=e2)? Upc o2[a := (vUI)],v

[ASSIGN-INFER]

p¢o
0'79,61 upc Ul,ak
k=P
(0 U{p}), 0, (e1:=e2)" Upe 0’0
U797 (61:=62)p ‘UPC 0/7U

[27] apply information flow analysis to the problem of safely de-
classifying information in JavaScript mashups.

In his dissertation, Zdancewic [43] first proposed rules for dy-
namic analysis to effectively handle implicit flows. Our own work
later dubbed the key assignment rule the no-sensitive-upgrade
check and addressed performance concerns for dynamic analy-
sis with a sparse-labeling approach [4]. Le Guernic et al. [25] use
dynamic automaton-based monitoring. Sabelfeld and Russo [37]
formally prove that both static and dynamic approaches make the
same security guarantees. Shinnar et al. [38] provides a dynamic
analysis that follows a lazy policy enforcement, similar in spirit
to our permissive upgrades. This same paper also discusses the
interplay between different dimensions of information, focusing
primarily on integrity and confidentiality.

Flow-sensitive approaches attempt to reduce false-positives
in information flow analysis, usually focused on static analysis
specifically. Hunt and Sands [22] use a type-system to guarantee
this property. Hammer and Snelting [20] use program dependency
graphs to analyze JVM bytecode. Russo and Sabelfeld discuss the
limits of flow-sensitivity for purely dynamic languages [34].

Both Chong and Myers [9] and Fournet and Rezk [16] focus on
downgrading confidential information. Askarov et al. [3] demon-
strate that Denning-style analysis may leak more than one bit in the
presence of intermediary output channels, but that any attack will
be limited to a brute-force approach. Askarov and Sabelfeld [1] and
King et al. [24] discuss exception handling challenges. Livshits
et al. [26] design a system for inferring information flow policies to
handle explicit flows.

7. Conclusion

We present a permissive-upgrade semantics that tracks information
flow in a more flexible manner than prior dynamic approaches, us-
ing a new label (P) to permit partially leaked data without loss

of soundness. Using this strategy, we introduce a degree of flow-
sensitivity into dynamic information flow analysis. To avoid stuck
executions, upgrade annotations are required on sensitive uses of
partially leaked data, and we show how these upgrade annotations
can be inferred dynamically. We hope these techniques will help
enforce important information-flow policies in dynamically typed
web applications. In ongoing work with Mozilla [13], we are ex-
ploring how to incorporate these and other ideas into the Firefox
web browser.
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