
How Mozilla Measures Security

Why Measure? Why Share?
Most traditional vendors do not share the details of what they are
doing to make their products more secure. If users only notice
security when it fails, it is hard to justify talking openly about security.
If a vendor ships a patch that fixes eight bugs and the headlines read
“Product has eight vulnerabilities!” then this vendor is not likely to
want to add to the negative story by contributing more information.
This is unfortunate because more information helps the security
community recognize when the vendor is doing reasonable things to
protect users.

All software has bugs. When evaluating which vendor is doing more to
secure its products, it is more productive to consider in this scenario
that this vendor fixed eight vulnerabilities, not just that they had them
in the first place.

When talking about how a vendor is making the products more secure,
it is not enough to say that this new version has increased security. In
order to evaluate whether the product is more secure we need to know
exactly what the vendor did to increase security.

Fixing bugs is not enough. Adding security features is not enough. We
need to know whether the product was designed and built with
security as an integral part of each step of the development process.
We need meaningful metrics to measure progress. If there are no
metrics released by the vendor, it is very difficult to judge whether
those products are doing better over time. There are a few metrics we
can see from the outside.

Counting Bugs
The first of these is the number of vulnerabilities. There are many
problems with relying on this as a measure of security. The number of
vulnerabilities identified is a factor of many things, including not just
how many vulnerabilities are present, but also how many people are
looking, how much time they spend, and how good they are at
looking. The presence of more vulnerabilities may indicate that
someone is looking really hard or has superior bug finding skills.

More importantly, the number of vulnerabilities we can identify from
the outside is not the whole picture. Most software vendors ship
security updates for security vulnerabilities that are reported
externally. Vulnerabilities that are found internally by QA or
contractors and consultants hired to do security analysis are usually

shipped in major releases or in service packs. For most vendors this
makes some sense since these fixes will get the benefit of a longer
test pass required for a major release or a service pack. But it also
means that the number of vulnerabilities fixed regularly in security
updates are a small percentage of the total number of vulnerabilities
fixed.

Additionally, not all vulnerabilities are fixed. There is always a trade-off
between fixing vulnerabilities and shipping on schedule. In most
environments the same people required to fix security bugs are the
same people that would otherwise be working on new features. There
is also a significant cost associated with regressions. In some
environments regression rates for security bugs can be as high as 25
percent. For these reasons, most development environments set a bar
for bugs that will be fixed and bugs that will not be fixed. Those bugs
that are not fixed are not necessarily moved to the next release.
These are bugs that do not meet a criticality threshold that justifies
the cost of fixing them. The resolution is to tolerate the risk of these
security vulnerabilities and leave them unpatched.

At Mozilla, the security updates we ship are comprised of fixes for
security issues found externally and through our internal testing. We
are constantly testing our software and improving our analysis tools to
get better at identifying security issues so that we can fix them. We
do not wait for major updates to get security fixes to users. Security
updates are our vehicle to continuously make the security work we are
doing available to users.

If we tried to compare the number of vulnerabilities identified in
Mozilla products with the number of vulnerabilities identified in other
products we would never get an accurate comparison. The whole world
can see all the moving parts in the Mozilla security processes. The
vulnerabilities fixed in a Mozilla security update include both internal
and externally found vulnerabilities. For most vendors, the security
updates contain only externally identified vulnerabilities and from the
outside, we cannot see the whole picture.

Over time we learn that a security bug that today might warrant a low
severity rating would get a higher severity rating in the future when
new information is identified. There was a time when we believed
crashes from heap overflows were not exploitable and that memory
retrieval vulnerabilities were low risk. We later learned that both can
result in serious security issues. We do not dismiss bugs with low
severity for this reason. Security bugs with the highest severity rating
are fixed first, but Mozilla fixes all security bugs with any level of
security risk. Often, fixing lower severity security bugs (like some

denial-of-service issues) ends up improving performance and
reliability.

Development environments should evaluate whether this kind of policy
is feasible for their operations and consider how to lower the bar for
security issues and increase the number of security issues fixed.

Window of Risk
A better measure of overall risk to users is evaluating how long it
takes for a user to get a security patch. This window is made up of
two parts.

The first is the time it takes for a vendor to create a patch, or the
Time to Fix. This includes the time to investigate a security issue,
develop and test a fix, and finally ship the update. This is a better
measure for understanding how safe a user is going to be than simply
counting bugs.

The second is Time to Deploy. This is how long it takes for users to
get a patch installed once the fix is available from the vendor.

Time to Fix

Time to Fix can be minimized by improving processes around response
and investigation. It is more difficult to improve on the time it takes
to develop a fix. Mozilla has been able to significantly reduce the time
it takes to test patches because of the help of over ten thousand
people from the Mozilla community who download and test nightly
builds. These people run pre-release software on their machines with
over ten thousand different host configurations, including installed
drivers, applications, add-ons, and use these extremely varied systems
to visit more different websites than we could possibly ever emulate
through automated testing. This incredible breadth allows us to get a
lot of testing done in a very short time. Reducing the time it takes to
test a security update means our users get a fix sooner.

Time to Deploy

Time to Deploy may be minimized through mechanisms such as the
automated update feature in Firefox. Our software update feature
frees users from the burden of checking for security updates and
automatically notifies them when an update is ready to download.

Time to Deploy

Window of Risk

Time to Fix

Mozilla has been able to further reduce the Time to Deploy security
updates for Firefox through infrastructure improvements and through
the support of partner organizations that host mirrors. These
improvements enable more users to get security patches faster and
make downloads of large updates more reliable.

Reducing the amount of time it takes to deliver patches reduces the
amount of time users are vulnerable to attack. If the limiting factor
for this metric is a physical resource like bandwidth or servers, it is
important to realize this so that the cost of securing users more
quickly can be accurately weighed against the financial cost of more
resources.

Internal Metrics
A software vendor can assess for themselves whether its processes are
working and whether the product is becoming more secure by looking
at a few other metrics.

Find Rate

The find rate, or how many bugs are found over a period of time, can
be used to evaluate whether the team is getting better at identifying
security issues. Improvement may be due to added resources on the
product security team, more effective tools, a greater amount of
person hours devoted to investigation or other factors.

In some scenarios, improvement in the find rate may also be due to an
increase in the number of vulnerabilities present. This may be the
case if a number of developers who are poorly trained in security best
practices have recently joined the development team through
acquisition or otherwise. This may also be the case if a third-party
technology or library was recently incorporated into the product and
has a lot of vulnerabilities.

Generally speaking, the find rate goes up as the environment becomes
more effective at finding vulnerabilities. Eventually, as developers are
trained in security best practices and existing vulnerabilities are fixed
the find rate will begin to decrease. This indicates that there are fewer
of the kinds of vulnerabilities that the development team knows how to
identify present in the product. It is important to continuously train
the team on new categories of vulnerability and methods for
identifying them to ensure that as the easier bugs are eliminated from
the product that the testers are able to move up to the more
sophisticated and subtle bugs that are more difficult to find.

Fix Rate

The fix rate, or the number of bugs fixed over a period of time, helps a
software vendor evaluate whether the current commitment of
resources is sufficient. If the fix rate is low and the find rate is high
the software vendor will soon have a large and growing backlog of
security bugs waiting for fixes. This indicates an insufficient allocation
of resources to bug fixing. This problem could also be resolved by
reducing the find rate, or telling people to stop looking, but that will
not make the product more secure.

The fix rate may go up if the development team allocates more time to
fixing bugs instead of, for example, working on new features. It may
also go up if the team introduces architectural changes that address
many vulnerabilities at once or potentially eliminate an entire class of
vulnerabilities. It will also go up as the team sees similar bugs
repeatedly and is able to replicate earlier work to address the new
problem reducing the amount of time spent on each individual issue.

Tracking the fix rate helps a development environment evaluate
whether developer time is being spent on tasks that are accurately
aligned with security goals or if more headcount is justified to achieve
these goals. It also acknowledges improvements in efficiency and
design changes that greatly impact the security of the product.

Severity

Tracking the severity of security issues over time indicates what sorts
of bugs are being identified and helps answer the inevitable
management question of “How bad is it?”

If over time the percentage of critical bugs is decreasing, this may
indicate that the worst of the worst have been identified and now the
majority of what remains are lower severity bugs. It may also indicate
that the remaining critical bugs are more subtle and more difficult to
find. Both of these indicate an improvement and would give weight to
what for most vendors is externally expressed as simply “improved
security.”

An open and transparent vendor approach to security enables the
security community to evaluate whether the vendor is serious about
security. If a vendor is doing great work in security, sharing this
information is the best way to let the world know.

