

Y.ZZ TLS 1.2

Details can be found in [TLS12].

Mechanism Functions
Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_TLS12_MASTER_KEY_DERIVE V
CKM_TLS12_MASTER_KEY_DERIVE_DH V
CKM_TLS12_KEY_AND_MAC_DERIVE V
CKM_TLS12_PRF V
CKM_TLS12_SHA256_MAC V
CKM_TLS12_SHA384_MAC V

Y.ZZ.1 Definitions

Mechanisms:

CKM_TLS12_MASTER_KEY_DERIVE

CKM_TLS12_KEY_AND_MAC_DERIVE

CKM_TLS12_MASTER_KEY_DERIVE_DH

CKM_TLS12_PRF

CKM_TLS12_SHA256_HMAC

CKM_TLS12_SHA384_HMAC

Y.ZZ.2 TLS 1.2 mechanism parameters

♦ CK_TLS12_PRF_PARAMS; CK_TLS12_PRF_PARAMS_PTR

CK_TLS12_PRF_PARAMS is a structure, which provides the parameters to the

CKM_TLS12_PRF mechanism. It is defined as follows:

typedef struct CK_TLS12_PRF_PARAMS {

CK_BYTE_PTR pSeed;

CK_ULONG ulSeedLen;

CK_BYTE_PTR pLabel;

CK_ULONG ulLabelLen;

CK_BYTE_PTR pOutput;

CK_ULONG_PTR pulOutputLen;

CK_MECHANISM_TYPE prfFunc;

} CK_TLS12_PRF_PARAMS;

The fields of the structure have the following meanings:

pSeed pointer to the input seed

ulSeedLen length in bytes of the input seed

pLabel pointer to the identifying label

ulLabelLen length in bytes of the identifying label

pOutput pointer receiving the output of the operation

pulOutputLen pointer to the length in bytes that the output to be

created shall have, has to hold the desired length

as input and will receive the calculated length as

output

prfFunc PRF function identifier

CK_TLS12_PRF_PARAMS_PTR is a pointer to a CK_TLS12_PRF_PARAMS.

♦ CK_TLS12_MASTER_KEY_DERIVE_PARAMS;

 CK_TLS12_MASTER_KEY_DERIVE_PARAMS_PTR

CK_TLS12_MASTER_KEY_DERIVE_PARAMS is a structure that provides the

parameters to the CKM_TLS12_MASTER_KEY_DERIVE mechanism. It is defined as

follows:

typedef struct CK_TLS12_MASTER_KEY_DERIVE_PARAMS {

CK_SSL3_RANDOM_DATA RandomInfo;

CK_VERSION_PTR pVersion;

CK_MECHANISM_TYPE prfFunc;

} CK_TLS12_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:

 RandomInfo client’s and server’s random data information.

pVersion pointer to a CK_VERSION structure which

receives the SSL protocol version information

prfFunc PRF identifier

CK_TLS12_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a

CK_TLS12_MASTER_KEY_DERIVE_PARAMS.

♦ CK_TLS12_KEY_MAT_PARAMS; CK_TLS12_KEY_MAT_PARAMS_PTR

CK_TLS12_KEY_MAT_PARAMS is a structure that provides the parameters to the

CKM_TLS12_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:

typedef struct CK_TLS12_KEY_MAT_PARAMS {

CK_ULONG ulMacSizeInBits;

CK_ULONG ulKeySizeInBits;

CK_ULONG ulIVSizeInBits;

CK_BBOOL bIsExport;

CK_SSL3_RANDOM_DATA RandomInfo;

CK_SSL3_KEY_MAT_OUT_PTR pReturnedKeyMaterial;

CK_MECHANISM_TYPE prfFunc;

} CK_TLS12_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:

ulMacSizeInBits the length (in bits) of the MACing keys agreed

upon during the protocol handshake phase

ulKeySizeInBits the length (in bits) of the secret keys agreed

upon during the protocol handshake phase

ulIVSizeInBits the length (in bits) of the IV agreed upon during

the protocol handshake phase. If no IV is

required, the length should be set to 0

bIsExport a Boolean value which indicates whether the

keys have to be derived for an export version of

the protocol

RandomInfo client’s and server’s random data information.

pReturnedKeyMaterial points to a CK_SSL3_KEY_MAT_OUT

structures which receives the handles for the

keys generated and the IVs

prfFunc PRF identifier

CK_TLS12_KEY_MAT_PARAMS_PTR is a pointer to a CK_TLS12_KEY_MAT_PARAMS.

Y.ZZ.3 TLS 1.2 PRF (pseudorandom function)

PRF (pseudo random function) in TLS 1.2, denoted CKM_TLS12_PRF, is a mechanism used

to produce a securely generated pseudo-random output of arbitrary length. The keys it

uses are generic secret keys.

It has a parameter, a CK_TLS12_PRF_PARAMS structure, which allows for the passing

of the input seed and its length, the passing of an identifying label and its length and the

passing of the length of the output to the token and for receiving the output.

This mechanism produces securely generated pseudo-random output of the length

specified in the parameter.

This mechanism departs from the other key derivation mechanisms in Cryptoki in not

using the template sent along with this mechanism during a C_DeriveKey function call,

which means the template shall be a NULL_PTR. For most key-derivation mechanisms,

C_DeriveKey returns a single key handle as a result of a successful completion.

However, since the CKM_TLS12_PRF mechanism returns the requested number of output

bytes in the CK_TLS_PRF12_PARAMS structure specified as the mechanism parameter,

the parameter phKey passed to C_DeriveKey is unnecessary, and should be a

NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then no output will be generated.

Y.ZZ.4 Master key derivation

Master key derivation in TLS 1.2, denoted CKM_TLS12_MASTER_KEY_DERIVE, is a

mechanism used to derive one 48-byte generic secret key from another 48-byte generic

secret key. It is used to produce the "master_secret" key used in the TLS 1.2 protocol from

the "pre_master" key. This mechanism returns the value of the client version, which is

built into the "pre_master" key as well as a handle to the derived "master_secret" key.

It has a parameter, a CK_TLS12_MASTER_KEY_DERIVE_PARAMS structure, which

allows for the passing of random data to the token as well as the returning of the protocol

version number which is part of the pre-master key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE

attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not

supplied in the template). Other attributes may be specified in the template, or else are

assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate

that the object class is CKO_SECRET_KEY, the key type is

CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.

However, since these facts are all implicit in the mechanism, there is no need to specify

any of them.

This mechanism has the following rules about key sensitivity and extractability:

 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for

the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,

these attributes each take on some default value.

 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,

then the derived key will as well. If the base key has its

CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has

its CKA_ALWAYS_SENSITIVE attribute set to the same value as its

CKA_SENSITIVE attribute.

 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to

CK_FALSE, then the derived key will, too. If the base key has its

CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key

has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its

CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the

CK_MECHANISM_INFO structure both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the

CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure’s pVersion field will be

modified by the C_DeriveKey call. In particular, when the call returns, this structure

will hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte

“pre_master” secret with an embedded version number. This includes the RSA cipher

suites, but excludes the Diffie-Hellman cipher suites.

Y.ZZ.5 Master key derivation for Diffie-Hellman

Master key derivation for Diffie-Hellman in TLS 1.2, denoted

CKM_TLS12_MASTER_KEY_DERIVE_DH, is a mechanism used to derive one 48-

byte generic secret key from another arbitrary length generic secret key. It is used to

produce the "master_secret" key used in the TLS 1.2 protocol from the "pre_master" key.

It has a parameter, a CK_TLS12_MASTER_KEY_DERIVE_PARAMS structure, which

allows for the passing of random data to the token. The pVersion field of the structure must

be set to NULL_PTR since the version number is not embedded in the "pre_master" key

as it is for RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE

attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not

supplied in the template). Other attributes may be specified in the template, or else are

assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate

that the object class is CKO_SECRET_KEY, the key type is

CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.

However, since these facts are all implicit in the mechanism, there is no need to specify

any of them.

This mechanism has the following rules about key sensitivity and extractability:

• The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for

the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,

these attributes each take on some default value.

• If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,

then the derived key will as well. If the base key has its

CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has

its CKA_ALWAYS_SENSITIVE attribute set to the same value as its

CKA_SENSITIVE attribute.

• Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to

CK_FALSE, then the derived key will, too. If the base key has its

CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key

has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its

CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the

CK_MECHANISM_INFO structure both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length

48-byte “pre_master” secret with an embedded version number. This includes the Diffie-

Hellman cipher suites, but excludes the RSA cipher suites.

Y.ZZ.6 Key and MAC derivation

Key, MAC and IV derivation in TLS 1.2, denoted

CKM_TLS12_KEY_AND_MAC_DERIVE, is a mechanism used to derive the

appropriate cryptographic keying material used by a "CipherSuite" from the

"master_secret" key and random data. This mechanism returns the key handles for the

keys generated in the process, as well as the IVs created.

It has a parameter, a CK_TLS12_KEY_MAT_PARAMS structure, which allows for the

passing of random data as well as the characteristic of the cryptographic material for the

given CipherSuite and a pointer to a structure which receives the handles and IVs which

were generated.

This mechanism contributes to the creation of four distinct keys on the token and returns

two IVs (if IVs are requested by the caller) back to the caller. The keys are all given an

object class of CKO_SECRET_KEY.

The two MACing keys ("client_write_MAC_secret" and "server_write_MAC_secret")

are always given a type of CKK_GENERIC_SECRET. They are flagged as valid for

signing, verification, and derivation operations.

The other two keys ("client_write_key" and "server_write_key") are typed according to

information found in the template sent along with this mechanism during a C_DeriveKey

function call. By default, they are flagged as valid for encryption, decryption, and

derivation operations.

IVs will be generated and returned if the ulIVSizeInBits field of the

CK_SSL_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their

length in bits will agree with the value in the ulIVSizeInBits field.

All four keys inherit the values of the CKA_SENSITIVE,

CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and

CKA_NEVER_EXTRACTABLE attributes from the base key. The template provided

to C_DeriveKey may not specify values for any of these attributes which differ from

those held by the base key.

Note that the CK_SSL3_KEY_MAT_OUT structure pointed to by the

CK_SSL3_KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will be

modified by the C_DeriveKey call. In particular, the four key handle fields in the

CK_SSL3_KEY_MAT_OUT structure will be modified to hold handles to the newlycreated

keys; in addition, the buffers pointed to by the CK_SSL3_KEY_MAT_OUT

structure’s pIVClient and pIVServer fields will have IVs returned in them (if IVs are

requested by the caller). Therefore, these two fields must point to buffers with sufficient

space to hold any IVs that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its

returned information. For most key-derivation mechanisms, C_DeriveKey returns a

single key handle as a result of a successful completion. However, since the

CKM_SSL3_KEY_AND_MAC_DERIVE mechanism returns all of its key handles in

the CK_SSL3_KEY_MAT_OUT structure pointed to by the

CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the

parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be

created on the token.

Y.ZZ.7 SHA256 MACing in TLS 1.2

SHA-256 MACing in TLS1.2, denoted CKM_TLS12_SHA256_MAC, is a mechanism for

single- and multiple-part signatures (data authentication) and verification using SHA-256,

based on the TLS 1.2 protocol. This technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in

bytes of the signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the

following table:

Table NN, SHA-256 MACing in TLS 1.2: Key And Data Length

Function

Key type Data

length

Signature length

C_Sign generic secret any 32

C_Verify generic secret any 32

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the

CK_MECHANISM_INFO structure specify the supported range of generic secret key

sizes, in bits.

Y.ZZ.8 SHA384 MACing in TLS 1.2

SHA-384 MACing in TLS1.2, denoted CKM_TLS12_SHA384_MAC, is a mechanism for

single- and multiple-part signatures (data authentication) and verification using SHA-384,

based on the TLS 1.2 protocol. This technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in

bytes of the signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the

following table:

Table NN, SHA-384 MACing in TLS 1.2: Key And Data Length

Function Key type Data Signature length

 length

C_Sign generic secret any 48

C_Verify generic secret any 48

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the

CK_MECHANISM_INFO structure specify the supported range of generic secret key

sizes, in bits.

