Buildbot/Talos/DataFormat
Talos Data Formatting
Raw data is generated by Talos. We apply some filters to summarize and reduce the data, then we post it to a server:
- Graphserver
- Perfherder
Raw Data
Perfherder
Perfherder ingests data from talos by parsing the raw log, then it stores the data in a database while preparing it for regression detection and displaying on graphs.
Raw Data
In the log files, we look for "TALOSDATA: " text followed by a valid json blob. An example TALOSDATA blob looks like:
[{"talos_counters": {}, "results": {"tresize": [23.26174999999999, 22.99621666666672, 22.66563333333331, 23.99620000000002, 22.940849999999948, 22.26951666666664, 22.975350000000006, 24.96453333333337, 23.6878333333334, 23.21740000000001, 24.743699999999976, 23.507333333333282, 22.927800000000033, 22.292066666666653, 23.28364999999999, 23.361950000000004, 22.18191666666666, 22.996466666666684, 23.54029999999997, 22.873883333333342]}, "summary": {"suite": 23.21740000000001, "subtests": {"tresize": {"std": 0.7716690474213389, "min": 22.18191666666666, "max": 24.96453333333337, "median": 23.21740000000001, "filtered": 23.21740000000001, "mean": 23.254913333333334}}}, "test_machine": {"platform": "x86", "osversion": "Ubuntu 12.04", "os": "linux", "name": "talos-linux32-ix-040"}, "testrun": {"date": 1440091515, "suite": "tresize", "options": {"responsiveness": false, "cycles": 20, "tpmozafterpaint": true, "shutdown": false, "rss": false}}, "test_build": {"name": "Firefox", "version": "43.0a1", "id": "20150820095841", "branch": "Mozilla-Inbound-Non-PGO", "revision": "bb85ec539217b9d3a5e83c40538d8565d292e72b"}}, {"talos_counters": {}, "results": {"Plasma - Maths- canvas shapes": [545.0, 572.0, 598.0, 662.0, 588.0], "Asteroids - Shapes- shadows- blending": [748.0, 737.0, 720.0, 742.0, 743.0], "Asteroids - Bitmaps- shapes- text": [1031.0, 1011.0, 913.0, 1063.0, 888.0], "Arena5 - Vectors- shadows- bitmaps- text": [892.0, 738.0, 900.0, 920.0, 806.0], "Asteroids - Vectors": [675.0, 735.0, 659.0, 789.0, 768.0], "3D Rendering - Maths- polygons- image transforms": [306.0, 434.0, 388.0, 426.0, 389.0], "Pixel blur - Math- getImageData- putImageData": [1291.0, 1435.0, 1553.0, 1461.0, 1521.0], "Asteroids - Bitmaps": [435.0, 418.0, 410.0, 403.0, 380.0]}, "summary": {"suite": 6204.0, "subtests": {"Plasma - Maths- canvas shapes": {"std": 34.19064199455752, "min": 572.0, "max": 662.0, "median": 593.0, "filtered": 593.0, "mean": 605.0}, "Asteroids - Shapes- shadows- blending": {"std": 9.233092656309694, "min": 720.0, "max": 743.0, "median": 739.5, "filtered": 739.5, "mean": 735.5}, "Asteroids - Bitmaps- shapes- text": {"std": 71.23333138355947, "min": 888.0, "max": 1063.0, "median": 962.0, "filtered": 962.0, "mean": 968.75}, "Arena5 - Vectors- shadows- bitmaps- text": {"std": 73.40980860893181, "min": 738.0, "max": 920.0, "median": 853.0, "filtered": 853.0, "mean": 841.0}, "Asteroids - Vectors": {"std": 49.37294299512639, "min": 659.0, "max": 789.0, "median": 751.5, "filtered": 751.5, "mean": 737.75}, "3D Rendering - Maths- polygons- image transforms": {"std": 20.94486810653149, "min": 388.0, "max": 434.0, "median": 407.5, "filtered": 407.5, "mean": 409.25}, "Pixel blur - Math- getImageData- putImageData": {"std": 46.82680856090878, "min": 1435.0, "max": 1553.0, "median": 1491.0, "filtered": 1491.0, "mean": 1492.5}, "Asteroids - Bitmaps": {"std": 14.16642156650719, "min": 380.0, "max": 418.0, "median": 406.5, "filtered": 406.5, "mean": 402.75}}}, "test_machine": {"platform": "x86", "osversion": "Ubuntu 12.04", "os": "linux", "name": "talos-linux32-ix-040"}, "testrun": {"date": 1440091515, "suite": "tcanvasmark", "options": {"responsiveness": false, "tpmozafterpaint": false, "tpchrome": true, "tppagecycles": 1, "tpcycles": 5, "tprender": false, "shutdown": false, "cycles": 1, "rss": false}}, "test_build": {"name": "Firefox", "version": "43.0a1", "id": "20150820095841", "branch": "Mozilla-Inbound-Non-PGO", "revision": "bb85ec539217b9d3a5e83c40538d8565d292e72b"}}]
Filtering & Calculations
When the raw data comes in, we look for the summary tag in the json.
{"suite": 23.21740000000001, ... }
In this case we use 23.217 for the value inside of perfherder. This is the value that will be used for calculating alerts, displaying points on the graph, and for data when comparing two revisions.
In all cases there should be a 'subtests' field as well that lists out each page loaded along with a set of values:
"subtests": {"tresize": {"std": 0.7716690474213389, "min": 22.18191666666666, "max": 24.96453333333337, "median": 23.21740000000001, "filtered": 23.21740000000001, "mean": 23.254913333333334}
These values are used in the test specific view (not the suite summary). When viewing a graph, you can switch between different values for each data point to see what the mean, median, etc. are. This is where we get the fields. In addition, the default value is the 'filtered' value, this takes into account filters (ignore first 'x' data points, median|mean, etc.) on the raw data so we have summarized data being calculated at a single point.
Graph Server
Data is packaged as a file in an HTTP post object.
VALUES/AVERAGE
Two different types of data to be sent:
- A single value to be stored as the 'average' in the test_runs table
- A set of (interval, value) pairs to be stored in the test_run_values table, 'average' to be calculated by collector script
First type will be called 'AVERAGE' second called 'VALUES'. All data is formatted using comma separated notation.
date_run = seconds since epoch (linux time stamp) page_name = is unique to pages when combined with the pageset_id from test table
- for sending interval, value pairs
START VALUES machine_name,test_name,branch_name,ref_changeset,ref_build_id,date_run interval0,value0,page_name0 interval1,value1,page_name1 ... intervalEND,valueEND,page_id END
- for sending a single value
START AVERAGE machine_name,test_name,branch_name,ref_changeset,ref_build_id,date_run value0 END
Examples
values input:
START VALUES machine_1, test_1, branch_1, changeset_1, 13, 1229477017 1,1.0,page_01 2,2.0,page_02 3,3.0,page_03 4,1.0,page_04 5,2.0,page_05 6,3.0,page_06 7,1.0,page_07 8,2.0,page_08 9,3.0,page_09 10,1.0,page_10 11,2.0,page_11 12,3.0,page_12 END
response:
Content-type: text/plain
RETURN\ttest_1\tgraph.html#type=series&tests=[{"test":45,"branch":3455,"machine":234,"testrun"=6667}]
RETURN\ttest_1\t2.00\tgraph.html#tests=[{"test":45,"branch":3455,"machine":234}]
average input:
START AVERAGE machine_1, test_1, branch_1, changeset_1, 13, 1229477017 2.0 END
response:
Content-type: text/plain
RETURN\ttest_1\t2.00\tgraph.html#tests=[{"test":45,"branch":3455,"machine":234}]
browser_output.txt
The data is harvested from browser_output.txt:
__start_tp_report _x_x_mozilla_page_load,4070.909090909091,NaN,NaN _x_x_mozilla_page_load_details,avgmedian|4070.909090909091|average|4070.73|minimum|NaN|maximum|NaN|stddev|NaN |i|pagename|median|mean|min|max|runs| |0;gearflowers.svg;162.5;163;162;226;226;165;163;162;162 |1;composite-scale.svg;77;77.25;77;115;115;77;77;78;77 |2;composite-scale-opacity.svg;31.5;31.75;30;62;62;31;34;30;32 |3;composite-scale-rotate.svg;31;31;29;60;60;29;32;33;30 |4;composite-scale-rotate-opacity.svg;31;31.5;29;36;35;31;31;29;36 |5;hixie-001.xml;15065;15063.75;15059;15086;15059;15065;15065;15066;15086 |6;hixie-002.xml;15064.5;15060.5;15047;15070;15070;15064;15066;15065;15047 |7;hixie-003.xml;5038;5038.75;5037;5054;5042;5037;5037;5054;5039 |8;hixie-004.xml;5081.5;5081.5;5079;5087;5087;5084;5079;5084;5079 |9;hixie-005.xml;6369.5;6367.5;6349;6405;6362;6405;6377;6382;6349 |10;hixie-006.xml;9270;9276;9239;9342;9239;9325;9278;9342;9262 |11;hixie-007.xml;3623.5;3619.25;3601;3653;3627;3629;3653;3601;3620 __end_tp_report __start_cc_report _x_x_mozilla_cycle_collect,1137 __end_cc_report __startTimestamp1327556458940__endTimestamp __startBeforeLaunchTimestamp1327556130230__endBeforeLaunchTimestamp __startAfterTerminationTimestamp1327556459158__endAfterTerminationTimestamp