1,295
edits
| Line 66: | Line 66: | ||
* Define the translation T = P - S.P' | * Define the translation T = P - S.P' | ||
* Define the subimage rectangle I1 = floor(S.(F1 - D1)), I2 = ceil(S.(F2 - D1)) | * Define the subimage rectangle I1 = floor(S.(F1 - D1)), I2 = ceil(S.(F2 - D1)) | ||
If F1' = F2' then there is nothing to draw and requirement 8 is not relevant. So assume F1' < F2'. We must show that the ranges [I1, I2] and [S.F1' + T, S.F2' + T] have non-empty intersection. | |||
Let C = P' - (D1 + P/S). Then -0.5 < C <= 0.5. | |||
edits